forked from zhangjing1589/noncoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_analysis.R
864 lines (706 loc) · 33.9 KB
/
new_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# New Analysis BEGIN ------------------------------------------------------
# 计算1Mbp区间内突变频率与遗传、表观注释值的相关性
# Coding, Noconding, Promoter ...
# Coding为外显子区域
setwd("~/New_Analysis/")
source("functions.R")
library(data.table)
Sys.setenv(PATH=paste0("/home/zhangjing/bedtools2/bin:", Sys.getenv("PATH")))
# 预处理数据 -------------------------------------------------------------------
options(scipen = 30)
original_mut = "../icgc_data/预处理所有突变.tsv" # 经过预处理过的突变记录文件
if (F) {
mut <- fread(original_mut, data.table = F)
pos_mut <- mut[mut$mut == "single base substitution",]
###以bed格式输出所有单碱基突变
mut_bed <- pos_mut[,3:5]
mut_bed$start <- mut_bed$start - 1L
mut_bed$start = as.integer(mut_bed$start)
mut_bed$end = as.integer(mut_bed$end)
write.table(mut_bed, "single_mut.bed", sep = "\t", row.names = F, quote = F, col.names = F)
rm(mut, pos_mut, mut_bed); gc()
}
# 编码区 ---------------------------------------------------------------------
get_cds_region("../predict_prob/Homo_sapiens.GRCh37.75.gtf")
gc()
# merge,以防重叠区间
system("sort -k 1,1 -k 2,2n cds_region.bed > sorted_cds_region.bed")
#Sys.getenv("PATH")
system("bedtools merge -i sorted_cds_region.bed > merged_sorted_cds_region.bed")
file.remove("sorted_cds_region.bed")
# 非编码区 --------------------------------------------------------------------
system("sort -k 1,1 -k 2,2n human.hg19.genome > sorted_human.hg19.genome") #bedtools包中附带文件
system("bedtools complement -i merged_sorted_cds_region.bed -g sorted_human.hg19.genome > region_noncoding.bed")
# Promoter 区 --------------------------------------------------------------
# 选取-2500 到 +500 作为启动子区域
up_site = 2500
down_site = 500
##过滤数据
gtf_ensmble <- fread("../predict_prob/Homo_sapiens.GRCh37.75.gtf",
sep = "\t", colClasses=list(character= 1))
names(gtf_ensmble)[1] <- "V1"
ensmble_pro_cod <- gtf_ensmble[gtf_ensmble$V2 == "protein_coding",] #选择仅仅是蛋白质编码的转录本
transcript_pro_cod_ensmble <- ensmble_pro_cod[ensmble_pro_cod$V3 == "transcript",] ##########从转录本中选取总的转录本区间
options(scipen=30)
chr_index <- c(c(1:22),"X","Y")
chr_trans_pro <- transcript_pro_cod_ensmble[transcript_pro_cod_ensmble$V1 %in% chr_index, ] #仅仅挑选chr1:22 + X + Y 染色体
##从SST获取up_site到down_site的区间
pos_trans_chr_gtf <- chr_trans_pro[chr_trans_pro$V7 == "+",]
neg_trans_chr_gtf <- chr_trans_pro[chr_trans_pro$V7 == "-",]
pos_chr <- paste("chr",pos_trans_chr_gtf$V1, sep = "")
pos_start <- pos_trans_chr_gtf$V4 - up_site
pos_end <- pos_trans_chr_gtf$V4 + down_site
pos_bed <- data.frame(pos_chr, pos_start, pos_end)
names(pos_bed) <- c("chr","start","end")
neg_chr <- paste("chr",neg_trans_chr_gtf$V1, sep = "")
neg_start <- neg_trans_chr_gtf$V5 + up_site
neg_end <- neg_trans_chr_gtf$V5 - down_site
neg_bed <- data.frame(neg_chr, neg_end, neg_start)
names(neg_bed) <- c("chr","start","end")
promoter_region <- rbind(pos_bed, neg_bed)
promoter_region$index <- 1
write.table(promoter_region,"promoter_region.bed", sep = "\t", row.names = F, col.names = F,quote = F)
# 同样地,排序并merge
system("sort -k 1,1 -k 2,2n promoter_region.bed > sorted_promoter_region.bed")
system("bedtools merge -i sorted_promoter_region.bed > merged_sorted_promoter_region.bed")
file.remove("sorted_promoter_region.bed")
# 非Promoter的noncoding区 ----------------------------------------------------
# noncoding区间除了Promoter之外的区间
system("bedtools subtract -a region_noncoding.bed -b merged_sorted_promoter_region.bed > region_non_promoter.bed")
rm(list = ls()); gc()
source("functions.R")
# 获取不同区间上的突变数目 --------------------------------------------------------
region.coding = "merged_sorted_cds_region.bed"
region.noncoding = "region_noncoding.bed"
region.promoter = "merged_sorted_promoter_region.bed"
region.nonpromoter = "region_non_promoter.bed"
original_bed = "single_mut.bed"
get_reg_mution(original_bed, region.coding, "mut_coding.bed")
get_reg_mution(original_bed, region.noncoding, "mut_noncoding.bed")
get_reg_mution(original_bed, region.promoter, "mut_promoter.bed")
get_reg_mution(original_bed, region.nonpromoter, "mut_nonpromoter.bed")
# 分割基因组区间 -----------------------------------------------------------------
get_region_bed(1000000L)
system("sort -k 1,1 -k 2,2n hg19_mb_1M.bed > sorted_hg19_1M.bed")
# 计算突变数 -------------------------------------------------------------------
get_reg_mution_number("mut_coding.bed", "sorted_hg19_1M.bed", "1M_mut_coding.tsv")
get_reg_mution_number("mut_noncoding.bed", "sorted_hg19_1M.bed", "1M_mut_noncoding.tsv")
get_reg_mution_number("mut_promoter.bed", "sorted_hg19_1M.bed", "1M_mut_promoter.tsv")
get_reg_mution_number("mut_nonpromoter.bed", "sorted_hg19_1M.bed", "1M_mut_nonpromoter.tsv")
# 计算突变的各种注释结果 -------------------------------------------------------------
# 这里取自师兄之前的结果
# 下载原数据
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/mutation_counts_mb.tsv",
destfile = "mutation_counts_mb.tsv")
# CpG
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/CpG_percent_Mb.bed",
destfile = "CpG_percent_Mb.bed")
# GC
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/hg19_gcMb.bed",
destfile = "hg19_gcMb.bed")
# Conservation
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/conservation_Mb.bed",
destfile = "conservation_Mb.bed")
# Reptime
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/reptime_Mb.bed",
destfile = "reptime_Mb.bed")
# polII
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/polII_mb.bed",
destfile = "polII_mb.bed")
# mappability
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/mean_mb_mappability.tsv",
destfile = "mean_mb_mappability.tsv")
# rec_rate
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/rec_rate.tsv",
destfile = "rec_rate.tsv")
# tfbs
download.file("https://raw.githubusercontent.com/zhangjing1589/noncoding/master/tfbs_mb.bed",
destfile = "tfbs_mb.bed")
## Added on 2020
#system("sort -k 1,1 -k 2,2n tfbs_midpoint.union.bed > sorted.tfbs_midpoint.bed")
dt = data.table::fread("tfbs_midpoint.union.bed", header = FALSE)
dt$V2 = as.integer(dt$V2)
dt$V3 = as.integer(dt$V3)
data.table::fwrite(unique(dt[, c(1, 2, 3)]),
file = "tfbs_midpoint_3cols.bed",
sep = "\t",
col.names = FALSE)
system("sort -k 1,1 -k 2,2n tfbs_midpoint_3cols.bed > sorted.tfbs_midpoint_3cols.bed")
system("bedtools closest -a mut_noncoding.bed -b sorted.tfbs_midpoint_3cols.bed -d > dist2tfbs_midpoint.bed")
dt = data.table::fread("dist2tfbs_midpoint.bed", header = FALSE)
summary(dt$V7)
dt = dt[V7 != -1]
dt$V7[dt$V7 > 100] = 100
dt$V4 = NULL
dt$V5 = NULL
dt$V6 = NULL
data.table::fwrite(dt, file = "dist2tfbs.bed", col.names = FALSE, sep = "\t")
rm(list = ls()); gc()
system("bedtools map -a sorted_hg19_1M.bed -b dist2tfbs.bed -c 4 -o count,sum > tfbs_mb_dist.bed")
dist = data.table::fread("tfbs_mb_dist.bed", header = FALSE)
str(dist)
dist$V6 = as.integer(dist$V6)
dist$V6 = dist$V6 / dist$V5
summary(dist$V6)
cor.test(dist$V5, dist$V6)
plot(dist$V6, dist$V5,
ylab = "Noncoding mutactions in 1Mb region",
xlab = "Mean distance (bp) to midpoint of TFBS in 1Mb region")
data.table::fwrite(dist, file = "tfbs_mb_dist_tidy.bed", col.names = FALSE, sep = "\t")
# plot mutation density around tfbs
dt = data.table::fread("dist2tfbs_midpoint.bed", header = FALSE)
summary(dt$V7)
dt = dt[V7 != -1]
n_tfbs = length(unique(paste(dt$V4, dt$V6, sep = "-")))
dt$dist = dt$V3 - dt$V6
dist = dt$dist[dt$V7 <= 100]
save(dist, file = "tfbs_dist.RData")
rm(list = ls()); gc()
load(file = "tfbs_dist.RData")
layout(matrix(1:2, nrow=1))
hist(dist, breaks = 50,
xlab = "Distance (bp) to midpoint of TFBS", main = "Mutation histogram")
plot(density(dist), xlab = "Distance (bp) to mcidpoint of TFBS", main = "Mutation density")
layout(1)
df = table(dist)
df2 = data.table::data.table(
x = as.integer(names(df)),
y = as.integer(df) / n_tfbs
)
save(df2, file = "df2.RData")
library(ggplot2)
library(cowplot)
p = ggplot(as.data.frame(df2), aes(x=x, y=y)) +
geom_line() + labs(x = "Position relative to TFBS midpoint (bp)",
y = "Mutation density") + cowplot::theme_cowplot()
save_plot("Mutation_density_vs_TFBS_dist.pdf",
plot = p, base_aspect_ratio = 1.6)
##
# 收集遗传变异相关性 ---------------------------------------------------------------
rm(list = ls());gc()
mut_coding = "1M_mut_coding.tsv"
mut_noncoding = "1M_mut_noncoding.tsv"
# mut_noncoding = "mutation_counts_mb.tsv" #师兄使用的数据
mut_promoter = "1M_mut_promoter.tsv"
mut_nonpromoter = "1M_mut_nonpromoter.tsv"
annot_CpG = "CpG_percent_Mb.bed"
annot_GC = "hg19_gcMb.bed"
annot_conservation = "conservation_Mb.bed"
annot_Reptime = "reptime_Mb.bed"
annot_polII = "polII_mb.bed"
annot_mappability = "mean_mb_mappability.tsv"
annot_rec_rate = "rec_rate.tsv"
# Modify TFBS to distance from mutation to TFBS midpoint
annot_tfbs = "tfbs_mb.bed"
annot = c(annot_CpG, annot_GC, annot_conservation, annot_Reptime,
annot_polII, annot_mappability, annot_rec_rate, annot_tfbs)
region.coding = "merged_sorted_cds_region.bed"
region.noncoding = "region_noncoding.bed"
region.promoter = "merged_sorted_promoter_region.bed"
region.nonpromoter = "region_non_promoter.bed"
add_coverage = function(gn_region, mut_file, result_file, ref_region="sorted_hg19_1M.bed"){
tmp_file = paste0("tmp_", basename(gn_region))
system(paste("bedtools coverage -a", ref_region, "-b", gn_region, ">", tmp_file))
tmp = fread(tmp_file)
file.remove(tmp_file)
mut = fread(mut_file)
res = merge(mut, tmp, by="V4")
write.table(res[, c(2:4,1,5,12)], result_file, sep = "\t", row.names = F, col.names = F, quote = F)
}
add_coverage(region.coding, mut_coding, "1M_mut_coding_add_cov.tsv")
add_coverage(region.noncoding, mut_noncoding, "1M_mut_noncoding_add_cov.tsv")
add_coverage(region.promoter, mut_promoter, "1M_mut_promoter_add_cov.tsv")
add_coverage(region.nonpromoter, mut_nonpromoter, "1M_mut_nonpromoter_add_cov.tsv")
# calculate coverage
#system("bedtools coverage -a sorted_hg19_1M.bed -b merged_sorted_cds_region.bed > test_cov2.bed")
# join by x with V4
# V4, V4, V1, V4, V1, V1, V4, V1
obtain_cor = function(annot_list, join_cols, mut_df) {
require(data.table)
out = data.table()
for (i in seq_along(annot_list)) {
message("Runing annotation #", i, ": ", annot_list[i])
value = fread(annot_list[i])
mut = fread(mut_df)
colnames(mut)[6] = "cov"
result = merge(value, mut, by.x = colnames(value)[join_cols[i]], by.y = "V4")
# calculate correlation
if (i == 5) {
result = result[(V3.x != 0) & (V5 !=0)]
tmp = data.table(
coeff = cor(result$V3.x, result$V5 / result$cov),
p_val = cor.test(result$V3.x, result$V5 / result$cov)$p.value
)
} else if (i == 7) {
result = result[(avg != 0) & (V5.y != 0)]
tmp = data.table(
coeff = cor(result$avg, result$V5.y / result$cov),
p_val = cor.test(result$avg, result$V5.y / result$cov)$p.value
)
} else {
result = result[(V5.x != 0) & (V5.x != ".") & (V5.y != 0) & (V5.y != ".") ]
result[, V5.x:=as.numeric(V5.x)]
result[, V5.y:=as.numeric(V5.y)]
tmp = data.table(
coeff = cor(result$V5.x, result$V5.y / result$cov),
p_val = cor.test(result$V5.x, result$V5.y / result$cov)$p.value
)
}
out = rbind(out, tmp)
}
out
}
mut_coding = "1M_mut_coding_add_cov.tsv"
mut_noncoding = "1M_mut_noncoding_add_cov.tsv"
# mut_noncoding = "mutation_counts_mb.tsv" #师兄使用的数据
mut_promoter = "1M_mut_promoter_add_cov.tsv"
mut_nonpromoter = "1M_mut_nonpromoter_add_cov.tsv"
cor_genetic = list()
cor_genetic[["noncoding"]] = obtain_cor(annot,
join_cols = c(4, 4, 1, 4, 1, 1, 4, 1),
mut_noncoding)
cor_genetic[["coding"]] = obtain_cor(annot,
join_cols = c(4, 4, 1, 4, 1, 1, 4, 1),
mut_coding)
cor_genetic[["promoter"]] = obtain_cor(annot,
join_cols = c(4, 4, 1, 4, 1, 1, 4, 1),
mut_promoter)
cor_genetic[["nonpromoter"]] = obtain_cor(annot,
join_cols = c(4, 4, 1, 4, 1, 1, 4, 1),
mut_nonpromoter)
cor_genetic[["noncoding"]]
cor_genetic[["coding"]]
cor_genetic[["promoter"]]
cor_genetic[["nonpromoter"]]
cor_genetic_df = rbindlist(cor_genetic, idcol = TRUE)
setnames(cor_genetic_df, ".id", "region")
cor_genetic_df[, features:=rep(c("CpG island", "GC content",
"Conservation", "Replication time",
"DNA poly II", "Mappability",
"Recombination rate", "TFBS"), 4)]
cor_genetic_df$features = factor(cor_genetic_df$features,
c("Mappability", "Replication time",
"TFBS", "GC content",
"CpG island", "DNA poly II",
"Conservation",
"Recombination rate"))
library(ggplot2)
library(cowplot)
library(RColorBrewer)
ggplot(cor_genetic_df[features != "TFBS"],
aes(x = features, y = coeff, fill=region)) +
geom_bar(stat = "identity", position = "dodge") +
scale_fill_brewer(palette = "Paired",
labels = c("Coding", "Noncoding",
"Noncoding-promoter", "Promoter")) +
labs(x = "Genetic features", y = "Correlation coefficient", fill = "Region") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) -> p_genetic
save_plot("Genetic_corrplot_rm_TFBS.pdf", plot = p_genetic, base_aspect_ratio = 1.6)
save(cor_genetic_df, file = "cor_genetic_df.RData")
cor_genetic_df2 = cor_genetic_df
setnames(cor_genetic_df2,
colnames(cor_genetic_df2),
c("Genomic region", "Correlation coefficient",
"P value", "Genetic feature"))
cor_genetic_df2[, `Genomic region` :=
ifelse(`Genomic region` == "nonpromoter",
"Noncoding-promoter", `Genomic region`)]
write.csv(as.data.frame(cor_genetic_df2), file = "遗传相关性结果3-wsx.csv", quote = FALSE, row.names = FALSE)
# library(gt)
# gt_genetic <- gt(data = cor_genetic_df2)
# gt_genetic
# value <- fread("CpG_percent_Mb.bed")
# mut <- fread("mutation_counts_mb.tsv")
# result <- merge(value, mut, by.x = "V4", by.y = "V4")
# result <- result[result$V5.x != 0,]
# cor(result$V5.x, result$V5.y)
# cor.test(result$V5.x, result$V5.y)
#
#
# mut_num <- read.table("mutation_counts_mb.tsv", stringsAsFactors = F)
# mut_num <- mut_num[mut_num$V5 != ".",]
# mut_num$V5 <- as.numeric(mut_num$V5)
#
# reptime <- read.table("reptime_Mb.bed", stringsAsFactors = F)
# reptime <- reptime[reptime$V5 != ".",]
# reptime$V5 <- as.numeric(reptime$V5)
# result <- merge(reptime, mut_num, by.x = "V4", by.y = "V4")
#
# result <- result[result$V5.x != 0, ]
# cor(result$V5.x, result$V5.y)
# cor.test(result$V5.x, result$V5.y)
# 表观相关性预处理 ----------------------------------------------------------------
rm(list = ls()); gc()
###按不同组织将肿瘤分类
mut <- fread("~/icgc_data/预处理所有突变.tsv")
donor <- fread("~/icgc_data/donor.tsv")
index <- donor[,1:2]
merge_result <- merge(mut, index, by.x = "donor", by.y = "icgc_donor_id")
dir.create("epi")
#将不同的肿瘤类型输出
#肝癌
liver <- c("LIAD-FR", "LICA-CN", "LICA-FR", "LINC-JP", "LIRI-JP")
liver_cancer <- merge_result[merge_result$project_code %in% liver,]
write.table(liver_cancer, "epi/liver_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(liver_cancer)
# #胃癌
# gastric <- c("STAD-US")
# gastric_cancer <- merge_result[merge_result$project_code %in% gastric,]
# write.table(gastric_cancer, "gastric_cancer_info.bed", sep = "\t", row.names = F, quote = F)
# rm(gastric_cancer)
#肾癌
kidney <- c("RECA-EU")
kidney_cancer <- merge_result[merge_result$project_code %in% kidney,]
write.table(kidney_cancer, "epi/kidney_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(kidney_cancer)
#肺癌
lung <- c("LUSC-CN","LUSC-KR")
lung_cancer <- merge_result[merge_result$project_code %in% lung,]
write.table(lung_cancer, "epi/lung_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(lung_cancer)
#乳腺癌
breast <- c("BRCA-EU","BRCA-FR","BRCA-US")
breast_cancer <- merge_result[merge_result$project_code %in% breast,]
write.table(breast_cancer, "epi/breast_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(breast_cancer)
#胰腺癌
pancreas <- c("PACA-AU","PACA-CA","PAEN-AU","PAEN-IT")
pancreas_cancer <- merge_result[merge_result$project_code %in% pancreas,]
write.table(pancreas_cancer, "epi/pancreas_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(pancreas_cancer)
#卵巢癌
ovary <- c("OV-AU")
ovary_cancer <- merge_result[merge_result$project_code %in% ovary,]
write.table(ovary_cancer, "epi/ovary_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(ovary_cancer)
#黑色素瘤
mela <- c("MELA-AU","SKCA-BR","SKCM-US")
mela_cancer <- merge_result[merge_result$project_code %in% mela,]
write.table(mela_cancer, "epi/mela_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(mela_cancer)
#食道癌
esophagus <- c("ESAD-UK","ESCA-CN")
esophagus_cancer <- merge_result[merge_result$project_code %in% esophagus,]
write.table(esophagus_cancer, "epi/esophagus_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(esophagus_cancer)
#血癌
blood <- c("ALL-US","CLLE-ES","MALY-DE","NKTL-SG")
blood_cancer <- merge_result[merge_result$project_code %in% blood,]
write.table(blood_cancer, "epi/blood_cancer_info.bed", sep = "\t", row.names = F, quote = F)
rm(blood_cancer)
# #结肠癌
# colon <- c("COAD-US","COCA-CN")
# colon_cancer <- merge_result[merge_result$project_code %in% colon,]
# write.table(colon_cancer, "colon_cancer_info.bed", sep = "\t", row.names = F, quote = F)
# rm(colon_cancer)
#
# #胶质瘤
# brain <- c("LGG-US")
# brain_cancer <- merge_result[merge_result$project_code %in% brain,]
# write.table(brain_cancer, "brain_cancer_info.bed", sep = "\t", row.names = F, quote = F)
# rm(brain_cancer)
rm(list = ls()); gc()
#删除chrM染色体
rm_chrM <- function(file)
{
df <- fread(file, data.table = F)
df <- df[df$V1 != "chrM",]
write.table(df, file, sep = "\t", row.names = F, quote = F, col.names = F)
}
##将表观遗传bed文件转化为bigwig文件
bed2bigwig <- function(bedfile, result_file)
{
temp1 <- paste("sorted_", bedfile, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",bedfile," > ",temp1, sep = "")
system(cmd1)
rm_chrM(temp1)
cmd2 <- paste("~/bedGraphToBigWig ",temp1,
"~/New_Analysis/sorted_human.hg19.genome",
file.path("~/New_Analysis/bigwig", result_file))
system(cmd2)
file.remove(temp1)
}
# #将DNase文件转换为bed 格式
# toBed <- function(file)
# {
# df <- fread(file, data.table = F)
# df <- df[,c(1:3,5)]
# write.table(df, file, sep = "\t", row.names = F, quote = F, col.names = F)
# }
dir.create("~/New_Analysis/bigwig")
setwd("~/roadmap/lung/bed/")
#肺癌 E096
##将注释文件换成二进制
bed2bigwig("E096-H3K27ac.broadPeak.bed","E096-H3K27ac.broadPeak.bigwig")
bed2bigwig("E096-H3K27me3.broadPeak.bed","E096-H3K27me3.broadPeak.bigwig")
bed2bigwig("E096-H3K36me3.broadPeak.bed","E096-H3K36me3.broadPeak.bigwig")
bed2bigwig("E096-H3K4me1.broadPeak.bed","E096-H3K4me1.broadPeak.bigwig")
bed2bigwig("E096-H3K4me3.broadPeak.bed","E096-H3K4me3.broadPeak.bigwig")
bed2bigwig("E096-H3K9me3.broadPeak.bed","E096-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/liver/bed/")
#肝癌 E066
##将注释文件换成二进制
bed2bigwig("E066-H3K27ac.broadPeak.bed","E066-H3K27ac.broadPeak.bigwig")
bed2bigwig("E066-H3K27me3.broadPeak.bed","E066-H3K27me3.broadPeak.bigwig")
bed2bigwig("E066-H3K36me3.broadPeak.bed","E066-H3K36me3.broadPeak.bigwig")
bed2bigwig("E066-H3K4me1.broadPeak.bed","E066-H3K4me1.broadPeak.bigwig")
bed2bigwig("E066-H3K4me3.broadPeak.bed","E066-H3K4me3.broadPeak.bigwig")
bed2bigwig("E066-H3K9ac.broadPeak.bed","E066-H3K9ac.broadPeak.bigwig")
bed2bigwig("E066-H3K9me3.broadPeak.bed","E066-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/Pancreas/bed/")
#胰腺癌 E098
bed2bigwig("E098-DNase.hotspot.broad.bed","E098-DNase.hotspot.broad.bigwig")
bed2bigwig("E098-H3K27ac.broadPeak.bed","E098-H3K27ac.broadPeak.bigwig")
bed2bigwig("E098-H3K27me3.broadPeak.bed","E098-H3K27me3.broadPeak.bigwig")
bed2bigwig("E098-H3K36me3.broadPeak.bed","E098-H3K36me3.broadPeak.bigwig")
bed2bigwig("E098-H3K4me1.broadPeak.bed","E098-H3K4me1.broadPeak.bigwig")
bed2bigwig("E098-H3K4me3.broadPeak.bed","E098-H3K4me3.broadPeak.bigwig")
bed2bigwig("E098-H3K9me3.broadPeak.bed","E098-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/Kidney/bed/")
#肾癌 E086
bed2bigwig("E086-DNase.hotspot.broad.bed","E086-DNase.hotspot.broad.bigwig")
bed2bigwig("E086-H3K27me3.broadPeak.bed","E086-H3K27me3.broadPeak.bigwig")
bed2bigwig("E086-H3K36me3.broadPeak.bed","E086-H3K36me3.broadPeak.bigwig")
bed2bigwig("E086-H3K4me1.broadPeak.bed","E086-H3K4me1.broadPeak.bigwig")
bed2bigwig("E086-H3K4me3.broadPeak.bed","E086-H3K4me3.broadPeak.bigwig")
bed2bigwig("E086-H3K9ac.broadPeak.bed","E086-H3K9ac.broadPeak.bigwig")
bed2bigwig("E086-H3K9me3.broadPeak.bed","E086-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/Esophagus/bed/")
#食道癌 E079
bed2bigwig("E079-H3K27ac.broadPeak.bed","E079-H3K27ac.broadPeak.bigwig")
bed2bigwig("E079-H3K27me3.broadPeak.bed","E079-H3K27me3.broadPeak.bigwig")
bed2bigwig("E079-H3K36me3.broadPeak.bed","E079-H3K36me3.broadPeak.bigwig")
bed2bigwig("E079-H3K4me1.broadPeak.bed","E079-H3K4me1.broadPeak.bigwig")
bed2bigwig("E079-H3K4me3.broadPeak.bed","E079-H3K4me3.broadPeak.bigwig")
bed2bigwig("E079-H3K9me3.broadPeak.bed","E079-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/blood/bed/")
#血癌 E062
bed2bigwig("E062-H3K27ac.broadPeak.bed","E062-H3K27ac.broadPeak.bigwig")
bed2bigwig("E062-H3K27me3.broadPeak.bed","E062-H3K27me3.broadPeak.bigwig")
bed2bigwig("E062-H3K36me3.broadPeak.bed","E062-H3K36me3.broadPeak.bigwig")
bed2bigwig("E062-H3K4me1.broadPeak.bed","E062-H3K4me1.broadPeak.bigwig")
bed2bigwig("E062-H3K4me3.broadPeak.bed","E062-H3K4me3.broadPeak.bigwig")
bed2bigwig("E062-H3K9ac.broadPeak.bed","E062-H3K9ac.broadPeak.bigwig")
bed2bigwig("E062-H3K9me3.broadPeak.bed","E062-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/breast/bed/")
#乳腺癌 E028
bed2bigwig("E028-DNase.hotspot.broad.bed","E028-DNase.hotspot.broad.bigwig")
bed2bigwig("E028-H3K27me3.broadPeak.bed","E028-H3K27me3.broadPeak.bigwig")
bed2bigwig("E028-H3K36me3.broadPeak.bed","E028-H3K36me3.broadPeak.bigwig")
bed2bigwig("E028-H3K4me1.broadPeak.bed","E028-H3K4me1.broadPeak.bigwig")
bed2bigwig("E028-H3K4me3.broadPeak.bed","E028-H3K4me3.broadPeak.bigwig")
bed2bigwig("E028-H3K9me3.broadPeak.bed","E028-H3K9me3.broadPeak.bigwig")
#黑色素瘤 E059 E061
setwd("~/roadmap/E059_Melanoma/bed/")
bed2bigwig("E059-DNase.hotspot.broad.bed","E059-DNase.hotspot.broad.bigwig")
bed2bigwig("E059-H3K27ac.broadPeak.bed","E059-H3K27ac.broadPeak.bigwig")
bed2bigwig("E059-H3K27me3.broadPeak.bed","E059-H3K27me3.broadPeak.bigwig")
bed2bigwig("E059-H3K36me3.broadPeak.bed","E059-H3K36me3.broadPeak.bigwig")
bed2bigwig("E059-H3K4me1.broadPeak.bed","E059-H3K4me1.broadPeak.bigwig")
bed2bigwig("E059-H3K4me3.broadPeak.bed","E059-H3K4me3.broadPeak.bigwig")
bed2bigwig("E059-H3K9me3.broadPeak.bed","E059-H3K9me3.broadPeak.bigwig")
setwd("~/roadmap/E061_Melanoma/bed/")
bed2bigwig("E061-H3K27ac.broadPeak.bed","E061-H3K27ac.broadPeak.bigwig")
bed2bigwig("E061-H3K27me3.broadPeak.bed","E061-H3K27me3.broadPeak.bigwig")
bed2bigwig("E061-H3K36me3.broadPeak.bed","E061-H3K36me3.broadPeak.bigwig")
bed2bigwig("E061-H3K4me1.broadPeak.bed","E061-H3K4me1.broadPeak.bigwig")
bed2bigwig("E061-H3K4me3.broadPeak.bed","E061-H3K4me3.broadPeak.bigwig")
bed2bigwig("E061-H3K9me3.broadPeak.bed","E061-H3K9me3.broadPeak.bigwig")
#卵巢癌 E097
setwd("~/roadmap/Ovary/bed/")
bed2bigwig("E097-DNase.hotspot.broad.bed","E097-DNase.hotspot.broad.bigwig")
bed2bigwig("E097-H3K27ac.broadPeak.bed","E097-H3K27ac.broadPeak.bigwig")
bed2bigwig("E097-H3K27me3.broadPeak.bed","E097-H3K27me3.broadPeak.bigwig")
bed2bigwig("E097-H3K36me3.broadPeak.bed","E097-H3K36me3.broadPeak.bigwig")
bed2bigwig("E097-H3K4me1.broadPeak.bed","E097-H3K4me1.broadPeak.bigwig")
bed2bigwig("E097-H3K4me3.broadPeak.bed","E097-H3K4me3.broadPeak.bigwig")
bed2bigwig("E097-H3K9me3.broadPeak.bed","E097-H3K9me3.broadPeak.bigwig")
setwd("~/New_Analysis/")
###计算MB范围的突变数
get_reg_mution_number2 = function(orig_file, mutation_file, region_file, result_file){
require(data.table)
options(scipen = 30)
mut <- fread(orig_file, data.table = F)
pos_mut <- mut[mut$mut == "single base substitution",]
mut_bed <- pos_mut[,3:5]
mut_bed$start <- mut_bed$start - 1L
write.table(mut_bed, mutation_file, sep = "\t", row.names = F, quote = F, col.names = F)
rm(mut, mut_bed); gc()
# 获取各个要计算的基因组区间
region.coding = "merged_sorted_cds_region.bed"
region.noncoding = "region_noncoding.bed"
region.promoter = "merged_sorted_promoter_region.bed"
region.nonpromoter = "region_non_promoter.bed"
mutation_file.coding = file.path("~/New_Analysis/epi/mutation/", paste0("mut_coding_", basename(mutation_file)))
mutation_file.noncoding = file.path("~/New_Analysis/epi/mutation/", paste0("mut_noncoding_", basename(mutation_file)))
mutation_file.promoter = file.path("~/New_Analysis/epi/mutation/", paste0("mut_promoter_", basename(mutation_file)))
mutation_file.nonpromoter = file.path("~/New_Analysis/epi/mutation/", paste0("mut_nonpromoter_", basename(mutation_file)))
get_reg_mution(mutation_file, region.coding, mutation_file.coding)
get_reg_mution(mutation_file, region.noncoding, mutation_file.noncoding)
get_reg_mution(mutation_file, region.promoter, mutation_file.promoter)
get_reg_mution(mutation_file, region.nonpromoter, mutation_file.nonpromoter)
result_file.coding = file.path("~/New_Analysis/epi/mutation/", paste0("coding_", basename(result_file)))
result_file.noncoding = file.path("~/New_Analysis/epi/mutation/", paste0("noncoding_", basename(result_file)))
result_file.promoter = file.path("~/New_Analysis/epi/mutation/", paste0("promoter_", basename(result_file)))
result_file.nonpromoter = file.path("~/New_Analysis/epi/mutation/", paste0("nonpromoter_", basename(result_file)))
# 获取不同区间的1M区间突变
get_reg_mution_number(mutation_file.coding, region_file, result_file.coding)
get_reg_mution_number(mutation_file.noncoding, region_file, result_file.noncoding)
get_reg_mution_number(mutation_file.promoter, region_file, result_file.promoter)
get_reg_mution_number(mutation_file.nonpromoter, region_file, result_file.nonpromoter)
}
#sub("^([^.]*).*", "\\1", 'filename.extension') remove file extension
# get_reg_mution_number2("epi/blood_cancer_info.bed", "epi/mutation/blood_cancer.bed",
# "sorted_hg19_1M.bed", "1M_blood_cancer.tsv")
# 批量计算不同癌症类型和区间的突变数
for (f in dir("epi", pattern = "_info.bed", full.names = T)){
mut_file = file.path("epi/mutation", sub("_info", "", basename(f)))
reg_file = "sorted_hg19_1M.bed"
result_file = paste0("1M_", sub("_info", "", basename(f)))
get_reg_mution_number2(f, mut_file, reg_file, result_file)
}
###计算每个MB区间的表观遗传值
dir.create("bigwig/output")
for (f in list.files("bigwig", pattern = "^E", full.names = TRUE, include.dirs = FALSE)) {
out = file.path("bigwig/output/", sub("([^\\.]*)\\..*", "\\1", basename(f)))
cmd <- paste("~/bigWigAverageOverBed", f, "sorted_hg19_1M.bed", out, sep = " ")
system(cmd)
}
rm(list = ls()); gc()
#求两列数据的平均值
cal_mean <- function(file1, file2, result_file)
{
file1_1 <- fread(file1, data.table = F)
file2_2 <- fread(file2, data.table = F)
file.copy(from = file1, to = "mela")
file.copy(from = file2, to = "mela")
file.remove(file1)
file.remove(file2)
merge_result <- merge(file1_1, file2_2, by.x = "V1", by.y = "V1")
mt <- merge_result[,c(5,10)]
mt <- as.matrix(mt)
mean_value <- apply(mt, 1, mean)
merge_result$mean <- mean_value
df <- merge_result[,c(1:4,12,6)]
write.table(df, result_file, sep = "\t", row.names = F, col.names = F, quote = F)
}
setwd("~/New_Analysis/bigwig/output/")
dir.create("mela") # back up files not used
cal_mean("E059-H3K36me3","E061-H3K36me3","E059_E061-H3K36me3")
cal_mean("E059-H3K9me3","E061-H3K9me3","E059_E061-H3K9me3")
cal_mean("E059-H3K27ac","E061-H3K27ac","E059_E061-H3K27ac")
cal_mean("E059-H3K4me1","E061-H3K4me1","E059_E061-H3K4me1")
cal_mean("E059-H3K27me3","E061-H3K27me3","E059_E061-H3K27me3")
cal_mean("E059-H3K4me3","E061-H3K4me3","E059_E061-H3K4me3")
# mapping of cancer and code
# lung E096
# liver E066
# ovary E097
# pancreas E098
# kidney E086
# esophagus E079
# blood E062
# breast E028
# melanoma E059 E061
mut_files = list.files("~/New_Analysis/epi/mutation", pattern = "1M", full.names = TRUE)
# add coverage ratio
region.coding = "merged_sorted_cds_region.bed"
region.noncoding = "region_noncoding.bed"
region.promoter = "merged_sorted_promoter_region.bed"
region.nonpromoter = "region_non_promoter.bed"
add_coverage(region.coding, mut_coding, "1M_mut_coding_add_cov.tsv")
sapply(grep("/coding", mut_files, value = TRUE), function(x) {
add_coverage(region.coding, x, file.path(dirname(x), paste0("Cov_", basename(x))))
})
sapply(grep("/noncoding", mut_files, value = TRUE), function(x) {
add_coverage(region.noncoding, x, file.path(dirname(x), paste0("Cov_", basename(x))))
})
sapply(grep("/promoter", mut_files, value = TRUE), function(x) {
add_coverage(region.promoter, x, file.path(dirname(x), paste0("Cov_", basename(x))))
})
sapply(grep("/nonpromoter", mut_files, value = TRUE), function(x) {
add_coverage(region.nonpromoter, x, file.path(dirname(x), paste0("Cov_", basename(x))))
})
mut_files = list.files("~/New_Analysis/epi/mutation", pattern = "Cov", full.names = TRUE)
annot_files = list.files("~/New_Analysis/bigwig/output/", pattern = "^E", full.names = TRUE)
mappings = c("blood", "breast", "esophagus", "kidney", "liver", "lung", "ovary", "pancreas", "mela")
names(mappings) = c("E062", "E028", "E079", "E086", "E066", "E096", "E097", "E098", "E059")
obtain_cor2 = function(mappings, mut_files, annot_files, types = c("coding", "noncoding", "promoter", "nonpromoter")) {
require(data.table)
options(scipen = 30)
out = data.table()
for (i in seq_along(mappings)) {
message("Processing tumor type - ", mappings[i], " - ", names(mappings)[i])
message(">> Searching mutation files...")
type_mut = grep(mappings[i], mut_files, value = TRUE)
message(">> OK")
message(">> Searching annotation files...")
type_anno = grep(names(mappings)[i], annot_files, value = TRUE)
message(">> OK")
for (type in types) {
message(">> Extracting region - ", type)
region_mut = grep(paste0("_",type), type_mut, value = TRUE) # precisely match
message(">> OK")
message(">> Calculating correaltion...")
mut = fread(region_mut)
colnames(mut)[6] = "cov"
for(f in type_anno) {
anno_type = unlist(strsplit(basename(f), split = "-"))[2]
anno = fread(f)
result = merge(mut, anno, by.x = "V4", by.y = "V1")
# calculate correlation
result = result[(V5.x != 0) & (V5.x != ".") & (V5.y != 0) & (V5.y != ".") ]
result[, V5.x:=as.numeric(V5.x)]
result[, V5.y:=as.numeric(V5.y)]
tmp = data.table(
tumor_type = mappings[i],
region = type,
anno_type = anno_type,
coeff = cor(result$V5.x / result$cov, result$V5.y),
p_val = cor.test(result$V5.x / result$cov, result$V5.y)$p.value)
out = rbind(out, tmp)
}
message(">> OK")
}
}
message("Done")
out
}
annot_cor = obtain_cor2(mappings, mut_files, annot_files)
setwd("~/New_Analysis/")
# save
annot_cor2 = data.table::copy(annot_cor)
setnames(annot_cor2,
colnames(annot_cor2),
c("Tumor type" ,"Genomic region",
"Epigenetic type",
"Correlation coefficient",
"P value"))
annot_cor2[, `Genomic region` :=
ifelse(`Genomic region` == "nonpromoter",
"Noncoding-promoter", `Genomic region`)]
write.csv(as.data.frame(annot_cor2), file = "表观相关性结果2-wsx.csv", quote = FALSE, row.names = FALSE)
# plot
plot_df = list()
plot_df[["noncoding"]] = annot_cor["noncoding", on = "region"][, c("region", "p_val"):=NULL]
plot_df[["coding"]] = annot_cor["coding", on = "region"][, c("region", "p_val"):=NULL]
plot_df[["nonpromoter"]] = annot_cor["nonpromoter", on = "region"][, c("region", "p_val"):=NULL]
plot_df[["promoter"]] = annot_cor["promoter", on = "region"][, c("region", "p_val"):=NULL]
plot_heatmap = function(df){
df_wide = tidyr::spread(data = df, tumor_type, coeff) %>%
tibble::column_to_rownames("anno_type")
rownames(df_wide)[rownames(df_wide) == "DNase"] = "DNase.hotspot"
colnames(df_wide)[colnames(df_wide) == "mela"] = "melanoma"
# row_order = c("H3K4me3", "DNase.hotspot", "H3K9ac",
# "H3K4me1", "H3K27ac", "H3K36me3",
# "H3K27me3", "H3K9me3")
# col_order = c("esophagus", "lung", "kidney",
# "blood", "breast", "liver",
# "melanoma", "ovary", "pancreas")
pheatmap::pheatmap(df_wide, cluster_rows = F, cluster_cols = F)
}
plot_heatmap(plot_df[["noncoding"]])
plot_heatmap(plot_df[["coding"]])
plot_heatmap(plot_df[["promoter"]])
plot_heatmap(plot_df[["nonpromoter"]])
# output pdf set width 5.5, height 5