-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdumps.go
102 lines (87 loc) · 2.7 KB
/
dumps.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
package varis
import (
"encoding/json"
"fmt"
"math/rand"
)
// generateUUID generate simple uuid.
func generateUUID() string {
b := make([]byte, 16)
rand.Read(b)
uuid := fmt.Sprintf("%X-%X-%X-%X-%X", b[0:4], b[4:6], b[6:8], b[8:10], b[10:])
return uuid
}
// ToJSON dump and transform Perceptron to json string.
func ToJSON(network Perceptron) string {
networkDump := make(map[string][]interface{})
networkDump["Layers"] = []interface{}{}
networkDump["Synapses"] = []interface{}{}
cache := make(map[Neuron]string)
for _, l := range network.layers {
layerDump := []interface{}{}
for _, n := range l {
uuid := generateUUID()
cache[n] = uuid
layerDump = append(layerDump, map[string]float64{uuid: n.getCore().weight})
}
networkDump["Layers"] = append(networkDump["Layers"], layerDump)
}
for _, l := range network.layers {
for _, n := range l {
for _, os := range n.getCore().conn.outSynapses {
synapseDump := map[string]interface{}{
"in": cache[os.inNeuron],
"out": cache[os.outNeuron],
"weight": os.weight,
}
networkDump["Synapses"] = append(networkDump["Synapses"], synapseDump)
}
}
}
jsonNetwork, _ := json.Marshal(networkDump)
return string(jsonNetwork)
}
// FromJSON load json string and create Perceptron.
func FromJSON(jsonString string) Perceptron {
networkLoad := make(map[string][]interface{})
json.Unmarshal([]byte(jsonString), &networkLoad)
network := Perceptron{}
network.input = make([]chan float64, 0)
network.output = make([]chan float64, 0)
cache := make(map[string]Neuron)
for index, loadLayer := range networkLoad["Layers"] {
layer := []Neuron{}
normalizeLayer := loadLayer.([]interface{})
for _, loadNeuron := range normalizeLayer {
var neuron Neuron
normalizedNeuron := loadNeuron.(map[string]interface{})
for uuid, value := range normalizedNeuron {
weight := value.(float64)
switch index {
case 0:
channel := make(chan float64)
neuron = INeuron(weight, channel)
network.input = append(network.input, channel)
case len(networkLoad["Layers"]) - 1:
channel := make(chan float64)
neuron = ONeuron(weight, channel)
network.output = append(network.output, channel)
default:
neuron = HNeuron(weight)
}
layer = append(layer, neuron)
cache[uuid] = neuron
}
}
network.layers = append(network.layers, layer)
}
for _, s := range networkLoad["Synapses"] {
normalizedSynapse := s.(map[string]interface{})
inNeuronUUID := normalizedSynapse["in"].(string)
outNeuronUUID := normalizedSynapse["out"].(string)
weight := normalizedSynapse["weight"].(float64)
ConnectNeurons(cache[inNeuronUUID], cache[outNeuronUUID], weight)
}
network.RunNeurons()
return network
}