-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdecode.py
93 lines (80 loc) · 3.8 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Decode fingerprint for the format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import tensorflow as tf
import smile as sm
from smile import logging
from unsupervised.seq2seq_model import FingerprintFetcher
with sm.app.flags.Subcommand("sample", dest="action"):
sm.app.flags.DEFINE_string("model_dir", "", "model path of the seq2seq fingerprint.",
required=True)
sm.app.flags.DEFINE_string("vocab_path", "", "Vocabulary path of the seq2seq fingerprint.",
required=True)
sm.app.flags.DEFINE_string("data_path", "", "Data path of the sample.", required=True)
sm.app.flags.DEFINE_integer("sample_size", 100, "Sample size from the data file.")
with sm.app.flags.Subcommand("fp", dest="action"):
sm.app.flags.DEFINE_string("model_dir", "", "model path of the seq2seq fingerprint.",
required=True)
sm.app.flags.DEFINE_string("vocab_path", "", "Vocabulary path of the seq2seq fingerprint.",
required=True)
sm.app.flags.DEFINE_string("data_path", "", "Required data path.", required=True)
sm.app.flags.DEFINE_string("output_path", "", "Output path of the sample.", required=True)
FLAGS = sm.app.flags.FLAGS
def sample_smiles(data_path, sample_size):
"""Sample several sentences."""
samples = set()
with open(data_path) as fobj:
lines = [_line for _line in fobj.readlines() if len(_line.strip())]
data_size = len(lines)
if data_size < sample_size:
sample_size_ori = sample_size
sample_size = data_size
logging.warning("sample size (%d) is too large, "
"data size (%d) is used instead as the sample size"
% (sample_size_ori, data_size))
while len(samples) < sample_size:
samples.add(random.randrange(len(lines)))
return [lines[index].strip() for index in list(samples)]
def sample_decode():
"""Sample some samples from data file and print out the recovered string."""
with tf.Session() as sess:
sampled_smiles = sample_smiles(FLAGS.data_path, FLAGS.sample_size)
fetcher = FingerprintFetcher(FLAGS.model_dir, FLAGS.vocab_path, sess)
exact_match_num = 0
for smile in sampled_smiles:
_, output_smile = fetcher.decode(smile)
if output_smile == smile:
exact_match_num += 1
print(": %s\n> %s\n" % (smile, output_smile))
print("Exact match count: %d/%d" % (exact_match_num, len(sampled_smiles)))
def read_smiles(data_file):
"""Read all smile from a line-splitted file."""
with open(data_file) as fobj:
out_smiles = [_line.strip() for _line in fobj if _line.strip()]
return out_smiles
def fp_decode():
"""Decode ALL samples from the given data file and output to file."""
with tf.Session() as sess, open(FLAGS.output_path, "w") as fout:
all_smiles = read_smiles(FLAGS.data_path)
fetcher = FingerprintFetcher(FLAGS.model_dir, FLAGS.vocab_path, sess)
exact_match_num = 0
for idx, smile in enumerate(all_smiles):
seq2seq_fp, output_smile = fetcher.decode(smile)
if output_smile == smile:
exact_match_num += 1
fout.write(" ".join([str(fp_bit) for fp_bit in seq2seq_fp]) + "\n")
if idx % 200 == 0 and idx:
print("Progress: %d/%d" % (idx, len(all_smiles)))
print("Exact match count: %d/%d" % (exact_match_num, len(all_smiles)))
def main(_):
"""Entry function for the script."""
if FLAGS.action == "sample":
sample_decode()
elif FLAGS.action == "fp":
fp_decode()
else:
print("Unsupported action: %s" % FLAGS.action)
if __name__ == "__main__":
sm.app.run()