-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·210 lines (161 loc) · 7.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
import json
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.optim import lr_scheduler
from collections import OrderedDict
from opts import parse_opts
from models.model import generate_model
from utils.mean import get_mean, get_std
from utils.spatial_transforms import (
Compose, Normalize, Scale_shorterside, Scale_longerside, CenterCrop, CornerCrop, MultiScaleCornerCrop,
MultiScaleRandomCrop, RandomHorizontalFlip, ToTensor)
from utils.temporal_transforms import LoopPadding, TemporalRandomCrop
from utils.target_transforms import ClassLabel, VideoID
from utils.target_transforms import Compose as TargetCompose
from dataset import get_training_set, get_validation_set
from utils.utils import Logger
if __name__ == '__main__':
import sys
print(sys.version)
print(torch.__version__)
opt = parse_opts()
if opt.root_path != '':
opt.dataset_path = os.path.join(opt.root_path, opt.dataset_path)
opt.result_path = os.path.join(opt.root_path, opt.result_path)
if not os.path.exists(opt.result_path):
os.makedirs(opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
opt.scales = [opt.initial_scale]
for i in range(1, opt.n_scales):
opt.scales.append(opt.scales[-1] * opt.scale_step)
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt.mean = get_mean(opt.norm_value, dataset=opt.mean_std_dataset)
opt.std = get_std(opt.norm_value, dataset=opt.mean_std_dataset)
print(opt)
with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
json.dump(vars(opt), opt_file)
torch.manual_seed(opt.manual_seed)
criterion = nn.CrossEntropyLoss()
if not opt.no_cuda:
criterion = criterion.cuda()
norm_method = Normalize(opt.mean, opt.std)
model, parameters = generate_model(opt)
print(model)
if not opt.no_train:
assert opt.train_crop in ['random', 'corner', 'center']
if opt.train_crop == 'random':
crop_method = MultiScaleRandomCrop(opt.scales, opt.sample_size)
elif opt.train_crop == 'corner':
crop_method = MultiScaleCornerCrop(opt.scales, opt.sample_size)
elif opt.train_crop == 'center':
crop_method = MultiScaleCornerCrop(
opt.scales, opt.sample_size, crop_positions=['c'])
spatial_transform = Compose([
Scale_longerside(opt.sample_size),
CenterCrop(opt.sample_size),
RandomHorizontalFlip(),
ToTensor(opt.norm_value), norm_method
])
target_transform = ClassLabel()
training_data = get_training_set(opt, spatial_transform, target_transform)
train_loader = torch.utils.data.DataLoader(
training_data,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_threads,
pin_memory=True)
if opt.learning_policy == '2stream':
train_logger = Logger(
os.path.join(opt.result_path, 'train.log'),
['epoch', 'loss', 'loss_cls', 'loss_box', 'OBOA', 'MAE', 'MAEP', 'MAEN', 'lr'])
train_batch_logger = Logger(
os.path.join(opt.result_path, 'train_batch.log'),
['epoch', 'batch', 'iter', 'loss', 'loss_cls', 'loss_box', 'OBOA', 'MAE', 'MAEP', 'MAEN', 'lr'])
from train_2stream import train_epoch
if opt.nesterov:
dampening = 0
else:
dampening = opt.dampening
finetune_parameters = []
ignored_params = list(map(id, finetune_parameters))
base_parameters = filter(lambda p: id(p) not in ignored_params,model.parameters())
if opt.optimizer == 'sgd':
optimizer = optim.SGD(
parameters,
lr=opt.learning_rate,
momentum=opt.momentum,
dampening=dampening,
weight_decay=opt.weight_decay,
nesterov=opt.nesterov)
elif opt.optimizer == 'adam':
if opt.train_from_scratch == True:
optimizer = optim.Adam([
{'params': base_parameters},
{'params': finetune_parameters, 'lr': opt.learning_rate*2}],
lr=opt.learning_rate,
weight_decay=opt.weight_decay)
else:
optimizer = optim.Adam(
finetune_parameters,
lr=opt.learning_rate*2,
weight_decay=opt.weight_decay)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[5,15], gamma=0.1)
if not opt.no_val:
spatial_transform = Compose([
Scale_longerside(opt.sample_size),
CenterCrop(opt.sample_size),
ToTensor(opt.norm_value), norm_method
])
target_transform = ClassLabel()
val_loader = {}
for j in range(0, len(opt.val_dataset)):
validation_data = get_validation_set(opt.val_dataset[j], spatial_transform, target_transform, opt)
val_loader[j] = torch.utils.data.DataLoader(
validation_data,
batch_size=opt.val_batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True)
if opt.validate_policy == '2stream':
val_logger = {}
for j in range(0, len(val_loader)):
val_logger[j] = Logger(
os.path.join(opt.result_path, 'val_'+opt.val_dataset[j]+'.log'),
['epoch', 'OBOA', 'MAE', 'MAE_std', 'MAEP', 'MAEN'])
from val_2stream import val_epoch
if opt.pretrain_path:
print('loading pretrained checkpoint {}'.format(opt.pretrain_path))
pretrain = torch.load(opt.pretrain_path)
pretrain = pretrain['state_dict']
new_state_dict = OrderedDict()
for k, v in pretrain.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)
if opt.resume_path:
print('loading checkpoint {}'.format(opt.resume_path))
checkpoint = torch.load(opt.resume_path)
# assert opt.arch == checkpoint['arch']
opt.begin_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'], strict=True)
if not opt.no_train:
optimizer.load_state_dict(checkpoint['optimizer'])
del checkpoint
torch.cuda.empty_cache()
print('run')
for i in range(opt.begin_epoch, opt.n_epochs + 1):
if not opt.no_train:
if opt.learning_policy == '2stream':
train_epoch(i, train_loader, model, optimizer, opt, train_logger, train_batch_logger)
if not opt.no_val:
for j in range(0, len(val_loader)):
validation_loss = val_epoch(i, val_loader[j], model, opt, val_logger[j], opt.val_dataset[j])
if opt.no_train:
break