-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMachineLib.py
51 lines (46 loc) · 1.3 KB
/
MachineLib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import matplotlib.pyplot as plt
def normalize(arr):
"""Normalize numpy array data by using standard normalization procedure
NOT IN PLACE modify
Args:
arr ([numpy array]): [must be valid]
Returns:
[numpy array]: [normlization version of array]
[numpy array]: [minValue]
[int]: [difference]
"""
minValue = arr.min(0)
maxValue = arr.max(0)
difference = maxValue - minValue
result = (arr-minValue)/difference
result[np.isnan(result) | np.isinf(result)] = 0
return result,minValue,difference
def getData(filename,size=None):
fin = open(filename)
ret = []
info = fin.readline()
info = info.strip()
info = int(info)
if(size == None):
size = info
for index in range(size):
line = fin.readline().strip()
line = line.replace(","," ")
line = line.split()
insert = []
for element in line:
insert.append(float(element))
ret.append(insert)
fin.close()
X = np.array(ret)
m,n = X.shape
Y = X[:,n-1].reshape(m,1)
X = X[:,:n-1]
return X,Y
def sigmoid(z):
ret = 1 / (1+ np.exp(-z))
return ret
def sigmoidGradient(z):
g = (1-sigmoid(z)*sigmoid(z))
return g