forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
paddleclas.py
356 lines (316 loc) · 14.9 KB
/
paddleclas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import numpy as np
import tarfile
import requests
from tqdm import tqdm
import tools.infer.utils as utils
import shutil
__all__ = ['PaddleClas']
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, 'inference_model')
BASE_IMAGES_DIR = os.path.join(BASE_DIR, 'images')
model_names = {
'Xception71', 'SE_ResNeXt101_32x4d', 'ShuffleNetV2_x0_5', 'ResNet34',
'ShuffleNetV2_x2_0', 'ResNeXt101_32x4d', 'HRNet_W48_C_ssld',
'ResNeSt50_fast_1s1x64d', 'MobileNetV2_x2_0', 'MobileNetV3_large_x1_0',
'Fix_ResNeXt101_32x48d_wsl', 'MobileNetV2_ssld', 'ResNeXt101_vd_64x4d',
'ResNet34_vd_ssld', 'MobileNetV3_small_x1_0', 'VGG11',
'ResNeXt50_vd_32x4d', 'MobileNetV3_large_x1_25',
'MobileNetV3_large_x1_0_ssld', 'MobileNetV2_x0_75',
'MobileNetV3_small_x0_35', 'MobileNetV1_x0_75', 'MobileNetV1_ssld',
'ResNeXt50_32x4d', 'GhostNet_x1_3_ssld', 'Res2Net101_vd_26w_4s',
'ResNet152', 'Xception65', 'EfficientNetB0', 'ResNet152_vd', 'HRNet_W18_C',
'Res2Net50_14w_8s', 'ShuffleNetV2_x0_25', 'HRNet_W64_C',
'Res2Net50_vd_26w_4s_ssld', 'HRNet_W18_C_ssld', 'ResNet18_vd',
'ResNeXt101_32x16d_wsl', 'SE_ResNeXt50_32x4d', 'SqueezeNet1_1',
'SENet154_vd', 'SqueezeNet1_0', 'GhostNet_x1_0', 'ResNet50_vc', 'DPN98',
'HRNet_W48_C', 'DenseNet264', 'SE_ResNet34_vd', 'HRNet_W44_C',
'MobileNetV3_small_x1_25', 'MobileNetV1_x0_5', 'ResNet200_vd', 'VGG13',
'EfficientNetB3', 'EfficientNetB2', 'ShuffleNetV2_x0_33',
'MobileNetV3_small_x0_75', 'ResNeXt152_vd_32x4d', 'ResNeXt101_32x32d_wsl',
'ResNet18', 'MobileNetV3_large_x0_35', 'Res2Net50_26w_4s',
'MobileNetV2_x0_5', 'EfficientNetB0_small', 'ResNet101_vd_ssld',
'EfficientNetB6', 'EfficientNetB1', 'EfficientNetB7', 'ResNeSt50',
'ShuffleNetV2_x1_0', 'MobileNetV3_small_x1_0_ssld', 'InceptionV4',
'GhostNet_x0_5', 'SE_HRNet_W64_C_ssld', 'ResNet50_ACNet_deploy',
'Xception41', 'ResNet50', 'Res2Net200_vd_26w_4s_ssld',
'Xception41_deeplab', 'SE_ResNet18_vd', 'SE_ResNeXt50_vd_32x4d',
'HRNet_W30_C', 'HRNet_W40_C', 'VGG19', 'Res2Net200_vd_26w_4s',
'ResNeXt101_32x8d_wsl', 'ResNet50_vd', 'ResNeXt152_64x4d', 'DarkNet53',
'ResNet50_vd_ssld', 'ResNeXt101_64x4d', 'MobileNetV1_x0_25',
'Xception65_deeplab', 'AlexNet', 'ResNet101', 'DenseNet121',
'ResNet50_vd_v2', 'Res2Net50_vd_26w_4s', 'ResNeXt101_32x48d_wsl',
'MobileNetV3_large_x0_5', 'MobileNetV2_x0_25', 'DPN92', 'ResNet101_vd',
'MobileNetV2_x1_5', 'DPN131', 'ResNeXt50_vd_64x4d', 'ShuffleNetV2_x1_5',
'ResNet34_vd', 'MobileNetV1', 'ResNeXt152_vd_64x4d', 'DPN107', 'VGG16',
'ResNeXt50_64x4d', 'RegNetX_4GF', 'DenseNet161', 'GhostNet_x1_3',
'HRNet_W32_C', 'Fix_ResNet50_vd_ssld_v2', 'Res2Net101_vd_26w_4s_ssld',
'DenseNet201', 'DPN68', 'EfficientNetB4', 'ResNeXt152_32x4d',
'InceptionV3', 'ShuffleNetV2_swish', 'GoogLeNet', 'ResNet50_vd_ssld_v2',
'SE_ResNet50_vd', 'MobileNetV2', 'ResNeXt101_vd_32x4d',
'MobileNetV3_large_x0_75', 'MobileNetV3_small_x0_5', 'DenseNet169',
'EfficientNetB5'
}
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
raise Exception("Something went wrong while downloading models")
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def save_prelabel_results(class_id, input_filepath, output_idr):
output_dir = os.path.join(output_idr, str(class_id))
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
shutil.copy(input_filepath, output_dir)
def load_label_name_dict(path):
result = {}
if not os.path.exists(path):
print(
'Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!'
)
else:
for line in open(path, 'r'):
partition = line.split('\n')[0].partition(' ')
try:
result[int(partition[0])] = str(partition[-1])
except:
result = {}
break
return result
def parse_args(mMain=True, add_help=True):
import argparse
def str2bool(v):
return v.lower() in ("true", "t", "1")
if mMain == True:
# general params
parser = argparse.ArgumentParser(add_help=add_help)
parser.add_argument("--model_name", type=str)
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("--use_gpu", type=str2bool, default=False)
# params for preprocess
parser.add_argument("--resize_short", type=int, default=256)
parser.add_argument("--resize", type=int, default=224)
parser.add_argument("--normalize", type=str2bool, default=True)
parser.add_argument("-b", "--batch_size", type=int, default=1)
# params for predict
parser.add_argument(
"--model_file", type=str, default='') ## inference.pdmodel
parser.add_argument(
"--params_file", type=str, default='') ## inference.pdiparams
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--enable_profile", type=str2bool, default=False)
parser.add_argument("--top_k", type=int, default=1)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--enable_benchmark", type=str2bool, default=False)
parser.add_argument("--cpu_num_threads", type=int, default=10)
parser.add_argument("--hubserving", type=str2bool, default=False)
# parameters for pre-label the images
parser.add_argument("--label_name_path", type=str, default='')
parser.add_argument(
"--pre_label_image",
type=str2bool,
default=False,
help="Whether to pre-label the images using the loaded weights")
parser.add_argument("--pre_label_out_idr", type=str, default=None)
return parser.parse_args()
else:
return argparse.Namespace(
model_name='',
image_file='',
use_gpu=False,
use_fp16=False,
use_tensorrt=False,
resize_short=256,
resize=224,
normalize=True,
batch_size=1,
model_file='',
params_file='',
ir_optim=True,
gpu_mem=8000,
enable_profile=False,
top_k=1,
enable_mkldnn=False,
enable_benchmark=False,
cpu_num_threads=10,
hubserving=False,
label_name_path='',
pre_label_image=False,
pre_label_out_idr=None)
class PaddleClas(object):
print('Inference models that Paddle provides are listed as follows:\n\n{}'.
format(model_names), '\n')
def __init__(self, **kwargs):
process_params = parse_args(mMain=False, add_help=False)
process_params.__dict__.update(**kwargs)
if not os.path.exists(process_params.model_file):
if process_params.model_name is None:
raise Exception(
'Please input model name that you want to use!')
if process_params.model_name in model_names:
url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar'.format(
process_params.model_name)
if not os.path.exists(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)):
os.makedirs(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name))
download_path = os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)
maybe_download(model_storage_directory=download_path, url=url)
process_params.model_file = os.path.join(download_path,
'inference.pdmodel')
process_params.params_file = os.path.join(
download_path, 'inference.pdiparams')
process_params.label_name_path = os.path.join(
__dir__, 'ppcls/utils/imagenet1k_label_list.txt')
else:
raise Exception(
'If you want to use your own model, Please input model_file as model path!'
)
else:
print('Using user-specified model and params!')
print("process params are as follows: \n{}".format(process_params))
self.label_name_dict = load_label_name_dict(
process_params.label_name_path)
self.args = process_params
self.predictor = utils.create_paddle_predictor(process_params)
def predict(self, img):
"""
predict label of img with paddleclas
Args:
img: input image for clas, support single image , internet url, folder path containing series of images
Returns:
dict:{image_name: "", class_id: [], scores: [], label_names: []},if label name path == None,label_names will be empty.
"""
assert isinstance(img, (str, np.ndarray))
input_names = self.predictor.get_input_names()
input_tensor = self.predictor.get_input_handle(input_names[0])
output_names = self.predictor.get_output_names()
output_tensor = self.predictor.get_output_handle(output_names[0])
if isinstance(img, str):
# download internet image
if img.startswith('http'):
if not os.path.exists(BASE_IMAGES_DIR):
os.makedirs(BASE_IMAGES_DIR)
image_path = os.path.join(BASE_IMAGES_DIR, 'tmp.jpg')
download_with_progressbar(img, image_path)
print("Current using image from Internet:{}, renamed as: {}".
format(img, image_path))
img = image_path
image_list = utils.get_image_list(img)
else:
if isinstance(img, np.ndarray):
image_list = [img]
else:
print('Please input legal image!')
total_result = []
for filename in image_list:
if isinstance(filename, str):
image = cv2.imread(filename)[:, :, ::-1]
assert image is not None, "Error in loading image: {}".format(
filename)
inputs = utils.preprocess(image, self.args)
inputs = np.expand_dims(
inputs, axis=0).repeat(
1, axis=0).copy()
else:
inputs = filename
input_tensor.copy_from_cpu(inputs)
self.predictor.run()
outputs = output_tensor.copy_to_cpu()
classes, scores = utils.postprocess(outputs, self.args)
label_names = []
if len(self.label_name_dict) != 0:
label_names = [self.label_name_dict[c] for c in classes]
result = {
"filename": filename if isinstance(filename, str) else 'image',
"class_ids": classes.tolist(),
"scores": scores.tolist(),
"label_names": label_names,
}
total_result.append(result)
if self.args.pre_label_image:
save_prelabel_results(classes[0], filename,
self.args.pre_label_out_idr)
print("\tSaving prelabel results in {}".format(
os.path.join(self.args.pre_label_out_idr, str(classes[
0]))))
return total_result
def main():
# for cmd
args = parse_args(mMain=True)
clas_engine = PaddleClas(**(args.__dict__))
print('{}{}{}'.format('*' * 10, args.image_file, '*' * 10))
result = clas_engine.predict(args.image_file)
if result is not None:
print(result)
if __name__ == '__main__':
main()