-
Notifications
You must be signed in to change notification settings - Fork 45
/
DEC.py
313 lines (258 loc) · 12.4 KB
/
DEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
Keras implementation for Deep Embedded Clustering (DEC) algorithm:
Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. ICML 2016.
Usage:
Weights of Pretrained autoencoder for mnist are in './ae_weights/mnist_ae_weights.h5':
python DEC.py mnist --ae_weights ./ae_weights/mnist_ae_weights.h5
for USPS and REUTERSIDF10K datasets
python DEC.py usps --update_interval 30 --ae_weights ./ae_weights/usps_ae_weights.h5
python DEC.py reutersidf10k --n_clusters 4 --update_interval 20 --ae_weights ./ae_weights/reutersidf10k_ae_weights.h5
Author:
Xifeng Guo. 2017.1.30
"""
from time import time
import numpy as np
import keras.backend as K
from keras.engine.topology import Layer, InputSpec
from keras.layers import Dense, Input
from keras.models import Model
from keras.optimizers import SGD
from keras.utils.vis_utils import plot_model
from sklearn.cluster import KMeans
from sklearn import metrics
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
from sklearn.utils.linear_assignment_ import linear_assignment
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def autoencoder(dims, act='relu'):
"""
Fully connected auto-encoder model, symmetric.
Arguments:
dims: list of number of units in each layer of encoder. dims[0] is input dim, dims[-1] is units in hidden layer.
The decoder is symmetric with encoder. So number of layers of the auto-encoder is 2*len(dims)-1
act: activation, not applied to Input, Hidden and Output layers
return:
Model of autoencoder
"""
n_stacks = len(dims) - 1
# input
x = Input(shape=(dims[0],), name='input')
h = x
# internal layers in encoder
for i in range(n_stacks-1):
h = Dense(dims[i + 1], activation=act, name='encoder_%d' % i)(h)
# hidden layer
h = Dense(dims[-1], name='encoder_%d' % (n_stacks - 1))(h) # hidden layer, features are extracted from here
# internal layers in decoder
for i in range(n_stacks-1, 0, -1):
h = Dense(dims[i], activation=act, name='decoder_%d' % i)(h)
# output
h = Dense(dims[0], name='decoder_0')(h)
return Model(inputs=x, outputs=h)
class ClusteringLayer(Layer):
"""
Clustering layer converts input sample (feature) to soft label, i.e. a vector that represents the probability of the
sample belonging to each cluster. The probability is calculated with student's t-distribution.
# Example
```
model.add(ClusteringLayer(n_clusters=10))
```
# Arguments
n_clusters: number of clusters.
weights: list of Numpy array with shape `(n_clusters, n_features)` witch represents the initial cluster centers.
alpha: parameter in Student's t-distribution. Default to 1.0.
# Input shape
2D tensor with shape: `(n_samples, n_features)`.
# Output shape
2D tensor with shape: `(n_samples, n_clusters)`.
"""
def __init__(self, n_clusters, weights=None, alpha=1.0, **kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(ClusteringLayer, self).__init__(**kwargs)
self.n_clusters = n_clusters
self.alpha = alpha
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
self.clusters = self.add_weight((self.n_clusters, input_dim), initializer='glorot_uniform', name='clusters')
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def call(self, inputs, **kwargs):
""" student t-distribution, as same as used in t-SNE algorithm.
q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it.
Arguments:
inputs: the variable containing data, shape=(n_samples, n_features)
Return:
q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters)
"""
q = 1.0 / (1.0 + (K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2) / self.alpha))
q **= (self.alpha + 1.0) / 2.0
q = K.transpose(K.transpose(q) / K.sum(q, axis=1))
return q
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
return input_shape[0], self.n_clusters
def get_config(self):
config = {'n_clusters': self.n_clusters}
base_config = super(ClusteringLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class DEC(object):
def __init__(self,
dims,
n_clusters=10,
alpha=1.0,
batch_size=256):
super(DEC, self).__init__()
self.dims = dims
self.input_dim = dims[0]
self.n_stacks = len(self.dims) - 1
self.n_clusters = n_clusters
self.alpha = alpha
self.batch_size = batch_size
self.autoencoder = autoencoder(self.dims)
def initialize_model(self, optimizer, ae_weights=None):
if ae_weights is not None: # load pretrained weights of autoencoder
self.autoencoder.load_weights(ae_weights)
else:
print 'ae_weights must be given. E.g.'
print 'python DEC.py mnist --ae_weights weights.h5'
exit()
hidden = self.autoencoder.get_layer(name='encoder_%d' % (self.n_stacks - 1)).output
self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)
# prepare DEC model
clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(hidden)
self.model = Model(inputs=self.autoencoder.input, outputs=clustering_layer)
self.model.compile(loss='kld', optimizer=optimizer)
def load_weights(self, weights_path): # load weights of DEC model
self.model.load_weights(weights_path)
def extract_feature(self, x): # extract features from before clustering layer
encoder = Model(self.model.input, self.model.get_layer('encoder_%d' % (self.n_stacks - 1)).output)
return encoder.predict(x)
def predict_clusters(self, x): # predict cluster labels using the output of clustering layer
q = self.model.predict(x, verbose=0)
return q.argmax(1)
@staticmethod
def target_distribution(q):
weight = q ** 2 / q.sum(0)
return (weight.T / weight.sum(1)).T
def clustering(self, x, y=None,
tol=1e-3,
update_interval=140,
maxiter=2e4,
save_dir='./results/dec'):
print 'Update interval', update_interval
save_interval = x.shape[0] / self.batch_size * 5 # 5 epochs
print 'Save interval', save_interval
# initialize cluster centers using k-means
print 'Initializing cluster centers with k-means.'
kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(self.encoder.predict(x))
y_pred_last = y_pred
self.model.get_layer(name='clustering').set_weights([kmeans.cluster_centers_])
# logging file
import csv, os
if not os.path.exists(save_dir):
os.makedirs(save_dir)
logfile = file(save_dir + '/dec_log.csv', 'wb')
logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'acc', 'nmi', 'ari', 'L'])
logwriter.writeheader()
loss = 0
index = 0
for ite in range(int(maxiter)):
if ite % update_interval == 0:
q = self.model.predict(x, verbose=0)
p = self.target_distribution(q) # update the auxiliary target distribution p
# evaluate the clustering performance
y_pred = q.argmax(1)
delta_label = np.sum(y_pred != y_pred_last).astype(np.float32) / y_pred.shape[0]
y_pred_last = y_pred
if y is not None:
acc = np.round(cluster_acc(y, y_pred), 5)
nmi = np.round(metrics.normalized_mutual_info_score(y, y_pred), 5)
ari = np.round(metrics.adjusted_rand_score(y, y_pred), 5)
loss = np.round(loss, 5)
logdict = dict(iter=ite, acc=acc, nmi=nmi, ari=ari, L=loss)
logwriter.writerow(logdict)
print 'Iter', ite, ': Acc', acc, ', nmi', nmi, ', ari', ari, '; loss=', loss
# check stop criterion
if ite > 0 and delta_label < tol:
print 'delta_label ', delta_label, '< tol ', tol
print 'Reached tolerance threshold. Stopping training.'
logfile.close()
break
# train on batch
if (index + 1) * self.batch_size > x.shape[0]:
loss = self.model.train_on_batch(x=x[index * self.batch_size::],
y=p[index * self.batch_size::])
index = 0
else:
loss = self.model.train_on_batch(x=x[index * self.batch_size:(index + 1) * self.batch_size],
y=p[index * self.batch_size:(index + 1) * self.batch_size])
index += 1
# save intermediate model
if ite % save_interval == 0:
# save IDEC model checkpoints
print 'saving model to:', save_dir + '/DEC_model_' + str(ite) + '.h5'
self.model.save_weights(save_dir + '/DEC_model_' + str(ite) + '.h5')
ite += 1
# save the trained model
logfile.close()
print 'saving model to:', save_dir + '/DEC_model_final.h5'
self.model.save_weights(save_dir + '/DEC_model_final.h5')
return y_pred
if __name__ == "__main__":
# setting the hyper parameters
import argparse
parser = argparse.ArgumentParser(description='train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dataset', default='mnist', choices=['mnist', 'usps', 'reutersidf10k'])
parser.add_argument('--n_clusters', default=10, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--maxiter', default=2e4, type=int)
parser.add_argument('--gamma', default=0.1, type=float,
help='coefficient of clustering loss')
parser.add_argument('--update_interval', default=140, type=int)
parser.add_argument('--tol', default=0.001, type=float)
parser.add_argument('--ae_weights', default=None, help='This argument must be given')
parser.add_argument('--save_dir', default='results/dec')
args = parser.parse_args()
print args
# load dataset
from datasets import load_mnist, load_reuters, load_usps
if args.dataset == 'mnist': # recommends: n_clusters=10, update_interval=140
x, y = load_mnist()
elif args.dataset == 'usps': # recommends: n_clusters=10, update_interval=30
x, y = load_usps('data/usps')
elif args.dataset == 'reutersidf10k': # recommends: n_clusters=4, update_interval=20
x, y = load_reuters('data/reuters')
# prepare the DEC model
dec = DEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=args.n_clusters, batch_size=args.batch_size)
dec.initialize_model(optimizer=SGD(lr=0.01, momentum=0.9),
ae_weights=args.ae_weights)
plot_model(dec.model, to_file='dec_model.png', show_shapes=True)
dec.model.summary()
t0 = time()
y_pred = dec.clustering(x, y=y, tol=args.tol, maxiter=args.maxiter,
update_interval=args.update_interval, save_dir=args.save_dir)
print 'acc:', cluster_acc(y, y_pred)
print 'clustering time: ', (time() - t0)