-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathkdf.cpp
executable file
·895 lines (789 loc) · 29.1 KB
/
kdf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/******************************************************************************
* Copyright 2015-2022 Xilinx, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
#include "kdf.h"
#include <fstream>
#include <iomanip>
#include <stdlib.h>
#include <string>
#include <stdint.h>
#include <sstream>
#include <vector>
#include <cstring>
using namespace std;
/************************************************************************
Example of NIST SP 800-108 in Counter Mode
i is chosen to be 32 bits. This allows the 128(2^32 -1) bits of keying material can be generated.
L will be 40 bits which allows for the full amount of i. So Ko of 128(2^32 -1) bits of data can
be and is limited by the size of i.
If Ko is being used to generate both the 256-bit AES key and the 96-bit IV for AES-GCM, then
this allows for about 1.56 x 10^9 key/IV pairs. Looking at worst case scenarios,
key rolling every 32 AES encryption blocks would allow us to encrypt ~800 GB of data with a
single root key.
Because the CMAC implementation provided only handles even 128-bit blocks,
the length of [i]2 || Label || 0x00 || Context || [L]2 must always be
evenly divisible by 128 bits. The CMAC implementation needs fixed so the customer can
provide any Context and Label. Just as an example, these values are being used
i = 32 bits
Label = 256 bits
Separator = 8 bits
Context = 48 bits
L = 40 bits
These are just arbitrary values. Really anything can be used and anything should be
permitted for the Context and Label. The spec defines the separator. The i and L lengths
are defined to sensible values for our implementation.
divisible by 128.
The same cmac key is used as the earlier cmac example. This would be the customer provided
secret seed or root key.
*************************************************************************/
#define VERBOSE_OUT_KDF kdfLogFile
/* Read a big endian 32 bit word from a byte stream. */
#define read_big_endian_32( addr ) \
( ( (uint32_t)( *( (uint8_t *)(addr) + 0 ) ) << 24 ) | \
( (uint32_t)( *( (uint8_t *)(addr) + 1 ) ) << 16 ) | \
( (uint32_t)( *( (uint8_t *)(addr) + 2 ) ) << 8 ) | \
(uint32_t)( *( (uint8_t *)(addr) + 3 ) ) )
/* Read a little endian 32 bit word from a byte stream. */
#define read_little_endian_32( addr ) \
( ( (uint32_t)( *( (uint8_t *)(addr) + 3 ) ) << 24 ) | \
( (uint32_t)( *( (uint8_t *)(addr) + 2 ) ) << 16 ) | \
( (uint32_t)( *( (uint8_t *)(addr) + 1 ) ) << 8 ) | \
(uint32_t)( *( (uint8_t *)(addr) + 0 ) ) )
/* Write a big endian 32 bit word to a byte stream. */
#define write_big_endian_32( addr, value ) \
*( (uint8_t *)(addr) + 0 ) = ( ( (value) >> 24 ) & 0xFF ); \
*( (uint8_t *)(addr) + 1 ) = ( ( (value) >> 16 ) & 0xFF ); \
*( (uint8_t *)(addr) + 2 ) = ( ( (value) >> 8 ) & 0xFF ); \
*( (uint8_t *)(addr) + 3 ) = ( (value) & 0xFF );
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
uint8_t expanded_key[240];
uint8_t cmac_key[32];
uint8_t K1[16];
uint8_t K2[16];
/******************************************************************************/
static void memcpy_be(uint8_t* dst, const uint32_t* src, size_t size)
{
uint32_t value = 0;
uint8_t *addr;
for (uint32_t i = 0; i<size / 4; i++)
{
addr = dst + (4 * i);
value = *(src + i);
write_big_endian_32(addr, value);
}
}
/******************************************************************************/
void copy_array_uint64_t(uint64_t *dst, uint64_t *src, int length)
{
int index;
for (index = 0; index<length; index++)
{
dst[index] = src[index];
}
}
/******************************************************************************/
void copy_array_uint8_t(uint8_t *dst, uint8_t *src, int size)
{
int index;
for (index = 0; index<size; index++)
{
dst[index] = src[index];
}
}
/******************************************************************************/
void copy_uint8_t_uint64_t(uint64_t *dst, uint8_t *src, int size)
{
int index8;
int index64;
index64 = 0;
for (index8 = 0; index8<size; index8++)
{
if (index8 % 8 == 0)
{
dst[index64] = 0;
}
dst[index64] = (dst[index64] << 8) | src[index8];
if (index8 % 8 == 7)
{
index64++;
}
}
}
/******************************************************************************/
void xor_array_uint64_t(uint64_t *dst, uint64_t *src, int size)
{
int index;
/* Xor the source onto the destination */
for (index = 0; index<size; index++)
{
dst[index] ^= src[index];
}
}
/******************************************************************************/
void xor_array_uint8_t(uint8_t *dst, uint8_t *src, int size)
{
int index;
/* Xor the source onto the destination */
for (index = 0; index<size; index++)
{
dst[index] ^= src[index];
}
}
/******************************************************************************/
void add_array_uint64_t(uint64_t *dst, uint64_t *src, int length)
{
int index;
for (index = 0; index<length; index++)
{
dst[index] += src[index];
}
}
/******************************************************************************/
void str_2_uint8_t(uint8_t *dst, char *str, int char_count)
{
int char_index;
int byte_index;
uint8_t nibble;
byte_index = 0;
for (char_index = 0; char_index<char_count; char_index++)
{
/* Initialize the byte */
if (char_index % 2 == 0)
{
dst[byte_index] = 0;
}
/* Calculate the nibble */
if ((str[char_index] >= '0') && (str[char_index] <= '9'))
{
nibble = (str[char_index] - '0');
}
else if ((str[char_index] >= 'a') && (str[char_index] <= 'f'))
{
nibble = (str[char_index] - 'a' + 10);
}
else if ((str[char_index] >= 'A') && (str[char_index] <= 'F'))
{
nibble = (str[char_index] - 'F' + 10);
}
else
{
nibble = 0;
}
/* Shift in the nibble */
dst[byte_index] = (dst[byte_index] << 4) | nibble;
/* Increment the byte pointer as needed */
if (char_index % 2 == 1)
{
byte_index++;
}
}
}
/******************************************************************************/
void uint64_t_2_str(char *str, uint64_t *src, int word_count)
{
int word_index;
int nibble_count;
int mychar;
for (word_index = 0; word_index<word_count; word_index++)
{
for (nibble_count = 0; nibble_count<16; nibble_count++)
{
mychar = (int)(src[word_index] >> (60 - 4 * (nibble_count))) & 0xF;
#ifdef __GNUC__
sprintf(&str[16 * word_index + nibble_count], "%x", mychar);
#else
sprintf_s(&str[16 * word_index + nibble_count], 64, "%x", mychar);
#endif
}
}
}
/******************************************************************************/
static void rotate_word(uint8_t *t, int size, int stride, int offset)
{
uint8_t temp;
int index;
int shift_count;
/* Count how many shifts happen */
for (shift_count = 0; shift_count<offset; shift_count++)
{
/* Rotate the word */
temp = t[0];
for (index = 1; index<size; index++)
{
t[stride*(index - 1)] = t[stride*index];
}
t[stride*(size - 1)] = temp;
}
}
/******************************************************************************/
static void sbox_word(uint8_t *t, int size)
{
int index;
/* Apply sbox to all the bytes */
for (index = 0; index<size; index++)
{
t[index] = sbox[t[index]];
}
}
/******************************************************************************/
static void expand_key(uint8_t *k)
{
int word_index, byte_index, iteration;
/* Copy the 1st 8 words */
for (word_index = 0; word_index<8; word_index++)
{
for (byte_index = 0; byte_index<4; byte_index++)
{
expanded_key[4 * word_index + byte_index] = k[4 * word_index + byte_index];
}
}
/* Expand the rest of the key */
iteration = 1;
for (; word_index<60; word_index++)
{
/* Assign the previous four bytes to the next 4 bytes */
copy_array_uint8_t(&expanded_key[4 * word_index], &expanded_key[4 * (word_index - 1)], 4);
/* For the 1st word of this 8 word portion of the expanded key */
if (word_index % 8 == 0)
{
rotate_word(&expanded_key[4 * word_index], 4, 1, 1);
}
/* For the 1st word and 4th word of this 8 word portion do substition */
if ((word_index % 8 == 0) || (word_index % 8 == 4))
{
sbox_word(&expanded_key[4 * word_index], 4);
}
/* For the 1st word of this 8 word portion of the expanded key */
if (word_index % 8 == 0)
{
expanded_key[4 * word_index] ^= Rcon[iteration];
iteration++;
}
/* Xor these expanded key bytes with earlier portions */
xor_array_uint8_t(&expanded_key[4 * word_index], &expanded_key[4 * (word_index - 8)], 4);
}
}
/******************************************************************************/
static void add_round_key(uint8_t *state, int rnd)
{
xor_array_uint8_t(state, &expanded_key[16 * rnd], 16);
}
/******************************************************************************/
static void sub_bytes(uint8_t *state)
{
sbox_word(state, 16);
}
/******************************************************************************/
static void shift_rows(uint8_t *state)
{
rotate_word(&state[1], 4, 4, 1);
rotate_word(&state[2], 4, 4, 2);
rotate_word(&state[3], 4, 4, 3);
}
/******************************************************************************/
static void mix_column(uint8_t *state)
{
uint8_t a[4];
uint8_t b[4];
uint8_t index;
uint8_t h;
/* The array 'a' is simply a copy of the input array 'r'
* The array 'b' is each element of the array 'a' multiplied by 2
* in Rijndael's Galois field
* a[n] ^ b[n] is element n multiplied by 3 in Rijndael's Galois field */
for (index = 0; index<4; index++)
{
a[index] = state[index];
h = (0x80 & state[index]) ? 0xff : 0x00;
b[index] = state[index] << 1;
b[index] ^= 0x1b & h;
}
state[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */
state[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */
state[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */
state[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */
}
/******************************************************************************/
static void mix_columns(uint8_t *state)
{
int column;
for (column = 0; column<4; column++)
{
mix_column(&state[4 * column]);
}
}
/******************************************************************************/
static void block_cipher(uint8_t *pt, uint8_t *ct)
{
int rnd;
copy_array_uint8_t(ct, pt, 16);
add_round_key(ct, 0);
for (rnd = 1; rnd<14; rnd++)
{
sub_bytes(ct);
shift_rows(ct);
mix_columns(ct);
add_round_key(ct, rnd);
}
sub_bytes(ct);
shift_rows(ct);
add_round_key(ct, rnd);
}
/******************************************************************************/
void ecb_encrypt(uint8_t *key, uint8_t *pt, uint8_t *ct, int blocks)
{
int block_count;
expand_key(key);
for (block_count = 0; block_count<blocks; block_count++)
{
block_cipher(&pt[16 * block_count], &ct[16 * block_count]);
}
}
/******************************************************************************/
void cbc_encrypt(uint8_t *iv, uint8_t *key, uint8_t *pt, uint8_t *ct, int blocks)
{
int block_count;
uint8_t cipher_input[16];
expand_key(key);
copy_array_uint8_t(cipher_input, iv, 16);
for (block_count = 0; block_count<blocks; block_count++)
{
xor_array_uint8_t(cipher_input, &pt[16 * block_count], 16);
block_cipher(cipher_input, &ct[16 * block_count]);
copy_array_uint8_t(cipher_input, &ct[16 * block_count], 16);
}
}
/******************************************************************************/
void gen_cmac_subkeys(uint8_t *key)
{
uint8_t pt[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t Rb[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x87 };
uint8_t L[16];
int i;
/* NIST SP 800-38B 6.1 Step 1 */
copy_array_uint8_t(cmac_key, key, 32);
ecb_encrypt(cmac_key, pt, L, 1);
/* NIST SP 800-38B 6.1 Step 2 */
for (i = 0; i<15; i = i + 1)
{
K1[i] = (L[i] << 1) | (L[i + 1] >> 7);
}
K1[15] = L[i] << 1;
if ((L[0] & 0x80) != 0)
{
for (i = 0; i<16; i = i + 1)
{
K1[i] ^= Rb[i];
}
}
/* NIST SP 800-38B 6.1 Step 3 */
for (i = 0; i<15; i = i + 1)
{
K2[i] = (K1[i] << 1) | (K1[i + 1] >> 7);
}
K2[15] = K1[i] << 1;
if ((K1[0] & 0x80) != 0)
{
for (i = 0; i<16; i = i + 1)
{
K2[i] ^= Rb[i];
}
}
}
/******************************************************************************/
void cmac(uint8_t *mac, uint8_t *msg, int total_bytes)
{
int block;
uint8_t ct[16];
uint8_t pt[16];
int lastBlockSize = total_bytes - ((total_bytes / 16) * 16);
int total_blocks = (total_bytes / 16) + ((total_bytes % 16) == 0 ? 0 : 1);
for (block = 0; block < total_blocks; block++)
{
copy_array_uint8_t(pt, &msg[16 * block], 16);
if (block == total_blocks - 1)
{
if (lastBlockSize == 0)
{
xor_array_uint8_t(pt, K1, 16);
}
else
{
pt[lastBlockSize++] = 0x80;
while (lastBlockSize & 15)
pt[lastBlockSize++] = 0x00;
xor_array_uint8_t(pt, K2, 16);
}
}
if (block != 0)
{
xor_array_uint8_t(pt, ct, 16);
}
ecb_encrypt(cmac_key, pt, ct, 1);
}
copy_array_uint8_t(mac, ct, 16);
}
/*******************************************************************************************************************/
static void pack_hex(const std::string& hex_string, uint8_t* hex_data)
{
uint32_t hex_string_length = (uint32_t)hex_string.size();
if (hex_string_length & 1)
{
std::cout << "Hex String - " << hex_string.c_str() << " - does not have even no. of hex digits" << std::endl;
exit(KDF_CAVP_HEXKEY_IMPROPER);
}
for (uint32_t i = 0; i < hex_string_length; i += 2)
{
std::string byte = hex_string.substr(i, 2);
if (!isxdigit(byte[0]) || !isxdigit(byte[1]))
{
std::cout << "Hex String - " << hex_string.c_str() << " - is has a non hex digit" << std::endl;
exit(KDF_CAVP_HEXKEY_IMPROPER);
}
*hex_data++ = (uint8_t)strtoul(byte.c_str(), NULL, 16);
}
}
/******************************************************************************/
void Kdf::SetKdfLogFilename(std::string filename)
{
kdf_log_file = filename;
}
/******************************************************************************/
std::string Kdf::GetKdfLogFilename(void)
{
return kdf_log_file;
}
/******************************************************************************/
std::string Kdf::GetVersion(void)
{
return VERSION;
}
/******************************************************************************/
uint32_t Kdf::CounterModeKDF(uint32_t* k_in, uint32_t* fid, uint32_t fid_byte_length, uint32_t* ko_buf, uint32_t ko_bytes, bool reset_cntr)
{
if (fid_byte_length == 0)
{
std::cout << "Fixed Input Data is not available. Seed and Fixed Input Data are mandatory for KDF." << std::endl;
return KDF_INPUT_FID_UNAVAILABLE;
}
if (k_in == NULL)
{
std::cout << "Seed is not available. Seed and Fixed Input Data are mandatory for KDF." << std::endl;
return KDF_INPUT_SEED_UNAVAILABLE;
}
if((fixed_input_data_byte_length != fid_byte_length) || (fixed_input_data == NULL))
{
fixed_input_data_byte_length = fid_byte_length;
delete[] fixed_input_data;
fixed_input_data = new uint8_t[fixed_input_data_byte_length];
}
memcpy_be(fixed_input_data, fid, fixed_input_data_byte_length);
/* This KDF accepts a seed of fixed length - 32bytes */
if (key_seed == NULL)
{
key_seed = new uint8_t[BYTES_PER_AES_SEED];
}
memcpy_be(key_seed, k_in, BYTES_PER_AES_SEED);
/* An example generating 4 key/IV pairs will have 4*(32+12) number_of_Ko_bytes.
This should be flexible based on number of keys or key/iv pair required
or it can just pull off key/IV as needed; it is acceptable to discard
32-bits and use 384 bits of Ko per 352-bits of key/iv pair. */
KDF(ko_bytes, reset_cntr);
for (uint32_t index = 0; index < (ko_bytes/sizeof(uint32_t)); index++)
{
ko_buf[index] = read_little_endian_32( (key_out + (index * sizeof(uint32_t))) );
}
return 0;
}
/******************************************************************************/
uint32_t Kdf::ParseKDFTestVectorFile(std::string filename)
{
std::cout << "Reading the Counter Mode KDF test file" << std::endl;
std::ifstream testFile(filename.c_str());
if (!testFile)
{
std::cout << "Failure reading Counter Mode KDF test file - " << filename.c_str() << std::endl;
return KDF_CAVP_TESTFILE_UNAVAILABLE;
}
while (testFile)
{
std::string word;
testFile >> word;
if (word == "")
{
return 0;
}
if (word == "L")
{
testFile >> word;
if (word == "=")
{
testFile >> word;
key_out_length = (uint32_t)strtoul(word.c_str(), NULL, 10);
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected '=''." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
else if (word == "KI")
{
testFile >> word;
if (word == "=")
{
testFile >> word;
if (word.size() != BYTES_PER_AES_SEED * 2)
{
std::cout << "KI must be 256 bits long - " << word.c_str() << std::endl;
exit(KDF_CAVP_KI_LENGTH_IMPROPER);
}
key_seed = new uint8_t[(uint32_t)word.size()];
pack_hex(word, key_seed);
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected '=''." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
else if (word == "FixedInputDataByteLen")
{
testFile >> word;
if (word == "=")
{
testFile >> word;
fixed_input_data_byte_length = (uint32_t)strtoul(word.c_str(), NULL, 10);
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected '=''." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
else if (word == "FixedInputData")
{
testFile >> word;
if (word == "=")
{
testFile >> word;
if (fixed_input_data_byte_length > 0)
{
fixed_input_data = new uint8_t[fixed_input_data_byte_length];
pack_hex(word, fixed_input_data);
}
else
{
std::cout << "FixedInputDataByteLen is expected prior to FixedInputData" << std::endl;
exit(KDF_CAVP_KI_LENGTH_IMPROPER);
}
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected '=''." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
else if (word == "KO")
{
testFile >> word;
if (word == "=")
{
testFile >> word;
verify_ko = new uint8_t[key_out_length / 8];
pack_hex(word, verify_ko);
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected '=''." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
else
{
std::cout << "Error parsing KDF test vector file - " << filename.c_str() << "\n\t Expected 'L','KI','FixedInputDataByteLen', and 'FixedInputData'." << std::endl;
return KDF_CAVP_TESTFILE_IMPROPER;
}
}
return 0;
}
/******************************************************************************/
uint32_t Kdf::CAVPonCounterModeKDF(std::string filename)
{
uint32_t ret_value = ParseKDFTestVectorFile(filename);
if (ret_value != 0)
{
return ret_value;
}
std::cout << "Generating Ko using Counter-Mode KDF..." << std::endl;
std::cout << "KO = ";
uint32_t number_of_Ko_bytes = key_out_length / 8;
KDF(number_of_Ko_bytes);
for (uint32_t y = 0; y < number_of_Ko_bytes; y++)
{
std::cout << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << uint32_t(key_out[y]);
}
std::cout << std::endl << std::endl;
if (verify_ko != NULL)
{
if (memcmp(key_out, verify_ko, number_of_Ko_bytes) == 0)
{
std::cout << "Verified with given Ko" << std::endl;
return 0;
}
else
{
std::cout << "Failed to verify with given Ko" << std::endl;
return KDF_CAVP_VERIFY_KO_FAILED;
}
}
std::cout << std::endl;
return 0;
}
/******************************************************************************/
void Kdf::ResetKdfCounter()
{
for(int32_t i = 0; i < KDF_COUNTER_BYTES; ++i)
{
kdf_counter[i] = 0x00;
}
}
/******************************************************************************/
bool Kdf::IsKdfCounterMax()
{
for(int32_t i = 0; i < KDF_COUNTER_BYTES; ++i)
{
if(kdf_counter[i] != 0xFF)
{
return false;
}
}
/* This function should practically never return 'true'
since the num of keys generated by KDF will always be less than 2^32 keys.i */
return true;
}
/******************************************************************************/
void Kdf::KDF(uint32_t ko_bytes, bool reset_cntr)
{
static std::ofstream kdfLogFile;
if (kdf_log_file != "")
{
kdfLogFile.open(kdf_log_file.c_str(), std::fstream::app);
VERBOSE_OUT_KDF << std::endl << "------------------------------------";
VERBOSE_OUT_KDF << std::endl << " Generating Ko of " << ko_bytes << " bytes";
VERBOSE_OUT_KDF << std::endl << "------------------------------------" << std::endl;
}
if (reset_cntr || IsKdfCounterMax())
{
ResetKdfCounter();
}
uint64_t number_of_input_bytes = KDF_COUNTER_BYTES + fixed_input_data_byte_length;
uint8_t* input = new uint8_t[number_of_input_bytes];
if((ko_bytes != key_out_length) || (key_out == NULL))
{
key_out_length = ko_bytes;
delete[] key_out;
key_out = new uint8_t[key_out_length];
}
gen_cmac_subkeys(key_seed);
copy_array_uint8_t(&input[0], kdf_counter, KDF_COUNTER_BYTES);
copy_array_uint8_t(&input[KDF_COUNTER_BYTES], fixed_input_data, fixed_input_data_byte_length);
uint32_t cmac_iterations = ko_bytes / 16;
cmac_iterations += ((ko_bytes % 16) == 0 ? 0 : 1);
/* Run the KDF for the amount of data needed */
uint32_t x;
int32_t y;
for (x = 0; x < cmac_iterations; x++)
{
/* Increment kdf_counter. The first value used is 1 */
y = 3;
do {
kdf_counter[y]++;
y--;
} while (kdf_counter[y + 1] == 0 && y >= 0);
copy_array_uint8_t(&input[0], kdf_counter, KDF_COUNTER_BYTES);
/* Run the PRF */
if (ko_bytes % 16 != 0 && x == cmac_iterations - 1)
{
uint8_t* last_ko = new uint8_t[16];
cmac(&last_ko[0], input, number_of_input_bytes);
memcpy(&key_out[16 * x], &last_ko[0], (ko_bytes - (16 * x)));
if (kdf_log_file != "")
{
for (y = 0; y < 16; y++)
{
VERBOSE_OUT_KDF << std::setfill('0') << std::setw(2) << std::hex << uint32_t(last_ko[y]);
}
VERBOSE_OUT_KDF << std::endl;
}
delete[] last_ko;
}
else
{
cmac(&key_out[16 * x], input, number_of_input_bytes);
if (kdf_log_file != "")
{
for (y = 0; y < 16; y++)
{
VERBOSE_OUT_KDF << std::setfill('0') << std::setw(2) << std::hex << uint32_t(key_out[16 * x + y]);
}
VERBOSE_OUT_KDF << std::endl;
}
}
}
if (kdf_log_file != "")
{
kdfLogFile.close();
}
delete[] input;
}