-
Notifications
You must be signed in to change notification settings - Fork 244
/
Copy pathdataloader.lua
168 lines (156 loc) · 5.16 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Multi-threaded data loader
--
local datasets = require 'datasets/init'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
local M = {}
local DataLoader = torch.class('resnet.DataLoader', M)
function DataLoader.create(opt)
-- The train and val loader
local loaders = {}
local data
if opt.dataset == 'lane' then
data = {'train', 'val'}
elseif opt.dataset == 'laneTest' then
data = {'val'}
else
cmd:error('unknown dataset: ' .. opt.dataset)
end
for i, split in ipairs(data) do
local dataset = datasets.create(opt, split)
print("data created")
loaders[i] = M.DataLoader(dataset, opt, split)
print("data loaded")
end
return table.unpack(loaders)
end
function DataLoader:__init(dataset, opt, split)
local manualSeed = opt.manualSeed
local function init()
require('datasets/' .. opt.dataset)
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
torch.setnumthreads(1)
_G.dataset = dataset
_G.preprocess = dataset:preprocess()
_G.preprocess_aug = dataset:preprocess_aug()
return dataset:size()
end
local threads, sizes = Threads(opt.nThreads, init, main)
-- self.nCrops = (split == 'val' and opt.tenCrop) and 10 or 1
self.nCrops = 1
self.threads = threads
self.__size = sizes[1][1]
self.batchSize = math.floor(opt.batchSize / self.nCrops)
self.split = split
self.dataset = opt.dataset
end
function DataLoader:size()
return math.ceil(self.__size / self.batchSize)
end
function DataLoader:run()
local threads = self.threads
local size, batchSize = self.__size, self.batchSize
local dataset = self.dataset
--if self.split == 'val' then
--batchSize = torch.round(batchSize / 2)
--end
local perm
if self.split == 'val' then
perm = torch.Tensor(size)
for i = 1, size do
perm[i] = i
end
else
perm = torch.randperm(size)
end
local idx, sample = 1, nil
local function enqueue()
while idx <= size and threads:acceptsjob() do
local indices = perm:narrow(1, idx, math.min(batchSize, size - idx + 1))
threads:addjob(
function(indices, nCrops)
local sz = indices:size(1)
local batch, segLabels, exists, imgpaths
for i, idx in ipairs(indices:totable()) do
local sample = _G.dataset:get(idx)
local input, segLabel, exist
if dataset=='laneTest' then
input = _G.preprocess(sample.input)
elseif dataset=='lane' then
input, segLabel, exist = _G.preprocess_aug(sample.input, sample.segLabel, sample.exist)
segLabel:resize(segLabel:size(2),segLabel:size(3))
else
cmd:error('unknown dataset: ' .. dataset)
end
if not batch then
local imageSize = input:size():totable()
local pathSize = sample.imgpath:size():totable()
batch = torch.FloatTensor(sz, table.unpack(imageSize))
imgpaths = torch.CharTensor(sz, table.unpack(pathSize))
if dataset=='lane' then
local labelSize = segLabel:size():totable()
local existSize = exist:size():totable()
segLabels = torch.FloatTensor(sz, table.unpack(labelSize))
exists = torch.FloatTensor(sz, table.unpack(existSize))
end
end
batch[i]:copy(input)
imgpaths[i]:copy(sample.imgpath)
if dataset=='lane' then
segLabels[i]:copy(segLabel)
exists[i]:copy(exist)
end
end
local targets
if dataset=='laneTest' then
targets = nil
elseif dataset=='lane' then
targets = {segLabels, exists}
else
cmd:error('unknown dataset: ' .. dataset)
end
collectgarbage(); collectgarbage()
return {
input = batch,
target = targets,
imgpath = imgpaths, -- used in test
}
end,
function(_sample_)
sample = _sample_
end,
indices,
self.nCrops
)
idx = idx + batchSize
end
end
local n = 0
local function loop()
enqueue()
if not threads:hasjob() then
return nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n + 1
return n, sample
end
return loop
end
return M.DataLoader