-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrender.py
113 lines (99 loc) · 5.08 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import argparse
import torch
import math
import os
import copy
from tqdm import tqdm
from torchvision.utils import save_image
from generators import generators
from siren import siren
from generators.utils import LSampler
from generators.volumetric_rendering import *
import curriculums
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
EPS = 1e-7
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--seeds', nargs='+', default=[0, 1, 2])
parser.add_argument('--output_dir', type=str, default='imgs')
parser.add_argument('--curriculum', type=str, default='CelebA_ShadeGAN_noview')
parser.add_argument('--max_batch_size', type=int, default=2400000)
parser.add_argument('--lock_view_dependence', action='store_true')
parser.add_argument('--sample_dist', type=str, default='fixed')
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--num_steps', type=int, default=24)
parser.add_argument('--psi', type=float, default=0.5)
parser.add_argument('--delta', type=float, default=0.0325)
parser.add_argument('--rotate', action='store_true')
parser.add_argument('--relight', action='store_true')
parser.add_argument('--ema', action='store_true')
opt = parser.parse_args()
os.makedirs(opt.output_dir, exist_ok=True)
opt.seeds = [int(seed) for seed in opt.seeds]
curriculum = getattr(curriculums, opt.curriculum)
metadata = curriculums.extract_metadata(curriculum, 0)
ldist = LSampler(device=device, dataset=metadata['dataset'])
SIREN = getattr(siren, metadata['model'])
generator = getattr(generators, metadata['generator'])(SIREN, metadata['latent_dim'], metadata['shading'],
metadata['view_condition'], metadata['light_condition'],
metadata['surf_track'], ldist=ldist).to(device)
if not opt.ema:
generator.load_state_dict(torch.load(opt.path, map_location=torch.device(device)), strict=False)
generator.set_device(device)
if opt.ema:
ema_file = opt.path.split('generator')[0] + 'ema.pth'
ema = torch.load(ema_file)
ema.copy_to(generator.parameters())
generator.eval()
options_dict = copy.deepcopy(metadata)
options_dict['img_size'] = opt.image_size
options_dict['num_steps'] = opt.num_steps
options_dict['psi'] = opt.psi
options_dict['delta'] = opt.delta
options_dict['sample_dist'] = opt.sample_dist
options_dict['lock_view_dependence'] = opt.lock_view_dependence
options_dict['nerf_noise'] = 0
if opt.rotate:
face_angles = [-0.5, -0.25, 0., 0.25, 0.5]
else:
face_angles = [0.]
face_angles = [a + options_dict['h_mean'] for a in face_angles]
if opt.relight:
dxs = [-1.5, -1, 0, 1, 1.5] # This controls light angle
# dxs = [-1.5, -1.0, -0.7, -0.35, 0, 0.35, 0.7, 1.0, 1.5]
else:
dxs = [0]
dy = 0.3
for seed in tqdm(opt.seeds):
torch.manual_seed(seed)
z = torch.randn((1, 256), device=device)
l = ldist.sample(1)
for i, yaw in enumerate(face_angles):
options_dict['h_mean'] = yaw
options_dict['v_mean'] = math.pi/2
for j, dx in enumerate(dxs):
if opt.relight:
l = torch.zeros((1,4), device=device)
l[:,0].fill_(0.17)
l[:,1].fill_(0.42)
l[:,2].fill_(dx)
l[:,3].fill_(dy)
with torch.no_grad():
results = generator.staged_forward(z, l, rt_normal=True, **options_dict)
img, depth_map, normal_map, pose = results['rgb'], results['depth'], results['normal'], results['pose']
prefix = f"img_seed{seed:05d}_yaw{i}_light{j}"
im_name = f"{prefix}_{options_dict['num_steps']}.png"
save_image(img/2+0.5, os.path.join(opt.output_dir, im_name), normalize=False)
save_image((depth_map-0.88)/0.24, os.path.join(opt.output_dir, f"{prefix}_depth.png"), normalize=True)
save_image(normal_map/2+0.5, os.path.join(opt.output_dir, f"img_seed{seed:05d}_yaw{i}_normal.png"), normalize=False)
if metadata['surf_track']:
save_image((results['depth_pred']-0.88)/0.24, os.path.join(opt.output_dir, f"{prefix}_depth_pred.png"), normalize=True)
if metadata['shading']:
save_image(results['albedo']/2+0.5, os.path.join(opt.output_dir, f"{prefix}_albedo.png"), normalize=False)
shading = results['shading']
ambience = l[:,None,:1]/2+0.5
diffuse = l[:,None,1:2]/2+0.5
diffuse_shading = (shading - ambience) / diffuse
save_image(diffuse_shading, os.path.join(opt.output_dir, f"{prefix}_diffuse.png"), normalize=False)
save_image(shading / shading.max().item(), os.path.join(opt.output_dir, f"{prefix}_shading.png"), normalize=False)