-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
350 lines (292 loc) · 12.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from __future__ import print_function
import argparse
import skimage
import skimage.io
import skimage.transform
from PIL import Image
from math import log10
import sys
import shutil
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from models.LEAStereo import LEAStereo
from models.build_model_hybrid import HybridStereoNet
from config_utils.predict_args import obtain_predict_args
from utils.colorize import get_color_map
from utils.multadds_count import count_parameters_in_MB, comp_multadds
from utils.util_functions import photometric_reconstruction, psnr_np
from skimage.metrics import structural_similarity as ssim
from time import time
from struct import unpack
import matplotlib.pyplot as plt
import re
import numpy as np
import pdb
import cv2
from path import Path
opt = obtain_predict_args()
print(opt)
torch.backends.cudnn.benchmark = True
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
print('===> Building LEAStereo model')
model = LEAStereo(opt)
# print('===> Building HybridStereoNet model')
# model = HybridStereoNet(opt)
print('Total Params = %.2fMB' % count_parameters_in_MB(model))
print('Feature Net Params = %.2fMB' % count_parameters_in_MB(model.feature))
print('Matching Net Params = %.2fMB' % count_parameters_in_MB(model.matching))
mult_adds = comp_multadds(model, input_size=(3,opt.crop_height, opt.crop_width)) #(3,192, 192))
print("compute_average_flops_cost = %.2fMB" % mult_adds)
if cuda:
model = torch.nn.DataParallel(model).cuda()
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
state_dict = checkpoint['state_dict']
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
for k in attn_mask_keys:
del state_dict[k]
model.load_state_dict(checkpoint['state_dict'], strict=False)
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
turbo_colormap_data = get_color_map()
def RGBToPyCmap(rgbdata):
nsteps = rgbdata.shape[0]
stepaxis = np.linspace(0, 1, nsteps)
rdata=[]; gdata=[]; bdata=[]
for istep in range(nsteps):
r = rgbdata[istep,0]
g = rgbdata[istep,1]
b = rgbdata[istep,2]
rdata.append((stepaxis[istep], r, r))
gdata.append((stepaxis[istep], g, g))
bdata.append((stepaxis[istep], b, b))
mpl_data = {'red': rdata,
'green': gdata,
'blue': bdata}
return mpl_data
mpl_data = RGBToPyCmap(turbo_colormap_data)
plt.register_cmap(name='turbo', data=mpl_data, lut=turbo_colormap_data.shape[0])
def readPFM(file):
with open(file, "rb") as f:
# Line 1: PF=>RGB (3 channels), Pf=>Greyscale (1 channel)
type = f.readline().decode('latin-1')
if "PF" in type:
channels = 3
elif "Pf" in type:
channels = 1
else:
sys.exit(1)
# Line 2: width height
line = f.readline().decode('latin-1')
width, height = re.findall('\d+', line)
width = int(width)
height = int(height)
# Line 3: +ve number means big endian, negative means little endian
line = f.readline().decode('latin-1')
BigEndian = True
if "-" in line:
BigEndian = False
# Slurp all binary data
samples = width * height * channels;
buffer = f.read(samples * 4)
# Unpack floats with appropriate endianness
if BigEndian:
fmt = ">"
else:
fmt = "<"
fmt = fmt + str(samples) + "f"
img = unpack(fmt, buffer)
img = np.reshape(img, (height, width))
img = np.flipud(img)
return img, height, width
def save_pfm(filename, image, scale=1):
'''
Save a Numpy array to a PFM file.
'''
color = None
file = open(filename, "w")
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n' % scale)
image.tofile(file)
def test_transform(temp_data, crop_height, crop_width):
_, h, w=np.shape(temp_data)
if h <= crop_height and w <= crop_width:
# padding zero
temp = temp_data
temp_data = np.zeros([6, crop_height, crop_width], 'float32')
temp_data[:, crop_height - h: crop_height, crop_width - w: crop_width] = temp
else:
start_x = int((w - crop_width) / 2)
start_y = int((h - crop_height) / 2)
temp_data = temp_data[:, start_y: start_y + crop_height, start_x: start_x + crop_width]
left = np.ones([1, 3,crop_height,crop_width],'float32')
left[0, :, :, :] = temp_data[0: 3, :, :]
right = np.ones([1, 3, crop_height, crop_width], 'float32')
right[0, :, :, :] = temp_data[3: 6, :, :]
return torch.from_numpy(left).float(), torch.from_numpy(right).float(), h, w
def load_data(leftname, rightname):
left = Image.open(leftname)
right = Image.open(rightname)
size = np.shape(left)
height = size[0]
width = size[1]
temp_data = np.zeros([6, height, width], 'float32')
left = np.asarray(left)
right = np.asarray(right)
r = left[:, :, 0]
g = left[:, :, 1]
b = left[:, :, 2]
temp_data[0, :, :] = (r - np.mean(r[:])) / np.std(r[:])
temp_data[1, :, :] = (g - np.mean(g[:])) / np.std(g[:])
temp_data[2, :, :] = (b - np.mean(b[:])) / np.std(b[:])
r = right[:, :, 0]
g = right[:, :, 1]
b = right[:, :, 2]
temp_data[3, :, :] = (r - np.mean(r[:])) / np.std(r[:])
temp_data[4, :, :] = (g - np.mean(g[:])) / np.std(g[:])
temp_data[5, :, :] = (b - np.mean(b[:])) / np.std(b[:])
return temp_data
def test_scared(leftname, rightname, savename, imgname):
input1, input2, height, width = test_transform(load_data(leftname, rightname), opt.crop_height, opt.crop_width)
input1 = Variable(input1, requires_grad = False)
input2 = Variable(input2, requires_grad = False)
model.eval()
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
torch.cuda.synchronize()
start_time = time()
with torch.no_grad():
prediction = model(input1, input2)
torch.cuda.synchronize()
end_time = time()
print("Processing time: {:.4f}".format(end_time - start_time))
temp = prediction.cpu()
temp = temp.detach().numpy()
if height <= opt.crop_height or width <= opt.crop_width:
temp = temp[0, opt.crop_height - height: opt.crop_height, opt.crop_width - width: opt.crop_width]
else:
temp = temp[0, :, :]
# temp = np.flipud(temp)
if opt.scared2019_small:
# if opt.scared2019_small or opt.scared2019:
imgpath = os.path.dirname(imgname)
if not os.path.exists(imgpath):
os.makedirs(imgpath)
plot_disparity(imgname, temp, 263)
disppath = os.path.dirname(savename)
if not os.path.exists(disppath):
os.makedirs(disppath)
cv2.imwrite(savename,temp)
def test_davinci(leftname, rightname, savename, imgname):
input1, input2, height, width = test_transform(load_data(leftname, rightname), opt.crop_height, opt.crop_width)
input1 = Variable(input1, requires_grad = False)
input2 = Variable(input2, requires_grad = False)
model.eval()
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
torch.cuda.synchronize()
start_time = time()
with torch.no_grad():
prediction_l = model(input1, input2)
prediction_r = model(input2, input1)
torch.cuda.synchronize()
end_time = time()
input1_pred = photometric_reconstruction(input1, input2, prediction_l, prediction_r)
left = input1.squeeze(0).cpu().detach().numpy()
pred_left = input1_pred.squeeze(0).cpu().detach().numpy()
pred_disp_l = prediction_l.cpu().detach().numpy()
if height <= opt.crop_height or width <= opt.crop_width:
left = left[:, opt.crop_height - height: opt.crop_height, opt.crop_width - width: opt.crop_width]
pred_left = pred_left[:, opt.crop_height - height: opt.crop_height, opt.crop_width - width: opt.crop_width]
pred_disp_l = pred_disp_l[0, opt.crop_height - height: opt.crop_height, opt.crop_width - width: opt.crop_width]
else:
left = left[:, :, :]
pred_left = pred_left[:, :, :]
pred_disp_l = pred_disp_l[0, :, :]
ssim_r = ssim(left[0, :, :], pred_left[0, :, :])
ssim_g = ssim(left[1, :, :], pred_left[1, :, :])
ssim_b = ssim(left[2, :, :], pred_left[2, :, :])
wssim = 1/3 * (ssim_r + ssim_g + ssim_b)
psnr = psnr_np(left, pred_left)
print("Processing time: {:.4f} ssim: {:.4f} psnr: {:.4f}".format(end_time - start_time, wssim, psnr))
# imgpath = os.path.dirname(imgname)
# if not os.path.exists(imgpath):
# os.makedirs(imgpath)
# plot_disparity(imgname, temp, 192)
# disppath = os.path.dirname(savename)
# if not os.path.exists(disppath):
# os.makedirs(disppath)
# cv2.imwrite(savename,temp)
return wssim, psnr
def plot_disparity(savename, data, max_disp):
plt.imsave(savename, data, vmin=0, vmax=max_disp, cmap='turbo')
if __name__ == "__main__":
ssim_all = 0
pnsr_all = 0
file_path = opt.data_path
file_list = opt.test_list
f = open(file_list, 'r')
filelist = f.readlines()
for index in range(len(filelist)):
current_file = filelist[index]
if opt.scared2019:
leftname = file_path + current_file[0: len(current_file) - 1]
img_path = Path(opt.save_path + 'images')
img_path.makedirs_p()
temppath = current_file[0: len(current_file) - 1].split("/")
if 'Left_Image' in leftname:
rightname = leftname.replace('Left_Image','Right_Image')
savename = opt.save_path + temppath[0] +'/'+ temppath[1] +'/'+ temppath[2] +'/'+ temppath[-1].replace('Left_Image.png','left_disp_map.tiff')
img_name = img_path +'/'+ temppath[0] +'/'+ temppath[1] +'/'+ temppath[2] +'/'+ temppath[-1].replace('Left_Image','left_disp_map')
elif 'left_finalpass' in leftname:
rightname = leftname.replace('left_finalpass','right_finalpass')
savename = opt.save_path + temppath[0] +'/'+ temppath[1] +'/'+ temppath[2] +'/'+ temppath[-1].replace('.png','.tiff')
img_name = img_path +'/'+ temppath[0] +'/'+ temppath[1] +'/'+ temppath[2] +'/'+ temppath[-1]
test_scared(leftname, rightname, savename, img_name)
if opt.scared2019_small:
leftname = file_path + current_file[0: len(current_file) - 1]
rightname = leftname.replace('img_left','img_right')
img_path = Path(opt.save_path + 'images')
img_path.makedirs_p()
temppath = current_file[0: len(current_file) - 1].split("/")
savename = opt.save_path + temppath[1].replace('.png','.tiff')
img_name = img_path +'/'+ temppath[1]
test_scared(leftname, rightname, savename, img_name)
if opt.davinci:
leftname = file_path + current_file[0: len(current_file) - 1]
rightname = leftname.replace('image_0','image_1')
img_path = Path(opt.save_path + 'images')
img_path.makedirs_p()
temppath = current_file[0: len(current_file) - 1].split("/")
savename = opt.save_path + temppath[2].replace('.png','.tiff')
img_name = img_path +'/'+ temppath[2]
ssim_ep, psnr_ep = test_davinci(leftname, rightname, savename, img_name)
ssim_all += ssim_ep
pnsr_all += psnr_ep
if opt.davinci:
print("ssim_avg: {:.4f} pnsr_avg: {:.4f}".format(ssim_all/len(filelist), pnsr_all/len(filelist)))