-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathenviron.py
391 lines (360 loc) · 19.2 KB
/
environ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python
import numpy as np
import pandas as pd
import torch
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.preprocessing import MinMaxScaler as Scaler
from sklearn.cross_decomposition import PLSRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC, SVR
from sklearn.model_selection import StratifiedKFold, KFold
from torch.utils.data import DataLoader, TensorDataset
import models
import os
import utils
import joblib
from copy import deepcopy
from rdkit import Chem
def SVM(X, y, X_ind, y_ind, reg=False):
""" Cross validation and Independent test for SVM classifion/regression model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m-d label array for cross validation, where m is the number of samples and
equals to row of X.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
reg (bool): it True, the training is for regression, otherwise for classification.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
if reg:
folds = KFold(5).split(X)
alg = SVR()
else:
folds = StratifiedKFold(5).split(X, y)
alg = SVC(probability=True)
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
gs = GridSearchCV(deepcopy(alg), {'C': 2.0 ** np.array([-15, 15]), 'gamma': 2.0 ** np.array([-15, 15])}, n_jobs=10)
gs.fit(X, y)
params = gs.best_params_
print(params)
for i, (trained, valided) in enumerate(folds):
model = deepcopy(alg)
model.C = params['C']
model.gamma = params['gamma']
if not reg:
model.probability=True
model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]])
if reg:
cvs[valided] = model.predict(X[valided])
inds += model.predict(X_ind)
else:
cvs[valided] = model.predict_proba(X[valided])[:, 1]
inds += model.predict_proba(X_ind)[:, 1]
return cvs, inds / 5
def RF(X, y, X_ind, y_ind, reg=False):
""" Cross validation and Independent test for RF classifion/regression model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m-d label array for cross validation, where m is the number of samples and
equals to row of X.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
reg (bool): it True, the training is for regression, otherwise for classification.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
if reg:
folds = KFold(5).split(X)
alg = RandomForestRegressor
else:
folds = StratifiedKFold(5).split(X, y)
alg = RandomForestClassifier
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
model = alg(n_estimators=1000, n_jobs=10)
model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]])
if reg:
cvs[valided] = model.predict(X[valided])
inds += model.predict(X_ind)
else:
cvs[valided] = model.predict_proba(X[valided])[:, 1]
inds += model.predict_proba(X_ind)[:, 1]
return cvs, inds / 5
def KNN(X, y, X_ind, y_ind, reg=False):
""" Cross validation and Independent test for KNN classifion/regression model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m-d label array for cross validation, where m is the number of samples and
equals to row of X.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
reg (bool): it True, the training is for regression, otherwise for classification.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
if reg:
folds = KFold(5).split(X)
alg = KNeighborsRegressor
else:
folds = StratifiedKFold(5).split(X, y)
alg = KNeighborsClassifier
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
model = alg(n_jobs=10)
model.fit(X[trained], y[trained])
if reg:
cvs[valided] = model.predict(X[valided])
inds += model.predict(X_ind)
else:
cvs[valided] = model.predict_proba(X[valided])[:, 1]
inds += model.predict_proba(X_ind)[:, 1]
return cvs, inds / 5
def NB(X, y, X_ind, y_ind):
""" Cross validation and Independent test for Naive Bayes classifion model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m-d label array for cross validation, where m is the number of samples and
equals to row of X.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
folds = KFold(5).split(X)
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
model = GaussianNB()
model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]])
cvs[valided] = model.predict_proba(X[valided])[:, 1]
inds += model.predict_proba(X_ind)[:, 1]
return cvs, inds / 5
def PLS(X, y, X_ind, y_ind):
""" Cross validation and Independent test for PLS regression model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m-d label array for cross validation, where m is the number of samples and
equals to row of X.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
reg (bool): it True, the training is for regression, otherwise for classification.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
folds = KFold(5).split(X)
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
model = PLSRegression()
model.fit(X[trained], y[trained])
cvs[valided] = model.predict(X[valided])[:, 0]
inds += model.predict(X_ind)[:, 0]
return cvs, inds / 5
def DNN(X, y, X_ind, y_ind, out, reg=False):
""" Cross validation and Independent test for DNN classifion/regression model.
Arguments:
X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples
and n is the number of features.
y (np.ndarray): m x l label matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types.
X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples
and n is the number of features.
y_ind (np.ndarray): m-d label arrays for independent set, where m is the number of samples and
equals to row of X_ind, and l is the number of types.
reg (bool): it True, the training is for regression, otherwise for classification.
Returns:
cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and
equals to row of X, and l is the number of types and equals to row of X.
"""
if y.shape[1] > 1 or reg:
folds = KFold(5).split(X)
else:
folds = StratifiedKFold(5).split(X, y[:, 0])
NET = models.STFullyConnected if y.shape[1] == 1 else models.MTFullyConnected
indep_set = TensorDataset(torch.Tensor(X_ind), torch.Tensor(y_ind))
indep_loader = DataLoader(indep_set, batch_size=BATCH_SIZE)
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
train_set = TensorDataset(torch.Tensor(X[trained]), torch.Tensor(y[trained]))
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE)
valid_set = TensorDataset(torch.Tensor(X[valided]), torch.Tensor(y[valided]))
valid_loader = DataLoader(valid_set, batch_size=BATCH_SIZE)
net = NET(X.shape[1], y.shape[1], is_reg=reg)
net.fit(train_loader, valid_loader, out='%s_%d' % (out, i), epochs=N_EPOCH, lr=LR)
cvs[valided] = net.predict(valid_loader)
inds += net.predict(indep_loader)
return cvs, inds / 5
def Train_RF(X, y, out, reg=False):
if reg:
model = RandomForestRegressor(n_estimators=1000, n_jobs=10)
else:
model = RandomForestClassifier(n_estimators=1000, n_jobs=10)
model.fit(X, y, sample_weight=[1 if v >= 4 else 0.1 for v in y])
joblib.dump(model, out, compress=3)
def mt_task(fname, out, reg=False, is_extra=True, time_split=False):
df = pd.read_table(fname)[pair].dropna(subset=pair[1:2])
df = df[df.Target_ChEMBL_ID.isin(trgs)]
year = df.groupby(pair[1])[pair[-1:]].min().dropna()
year = year[year.Document_Year > 2015].index
df = df[pair].set_index(pair[0:2])
numery = df[pair[2]].groupby(pair[0:2]).mean().dropna()
comments = df[(df.Comment.str.contains('Not Active') == True)]
inhibits = df[(df.Standard_Type == 'Inhibition') & df.Standard_Relation.isin(['<', '<='])]
relations = df[df.Standard_Type.isin(['EC50', 'IC50', 'Kd', 'Ki']) & df.Standard_Relation.isin(['>', '>='])]
binary = pd.concat([comments, inhibits, relations], axis=0)
binary = binary[~binary.index.isin(numery.index)]
binary[pair[2]] = 3.99
binary = binary[pair[2]].groupby(pair[0:2]).first()
df = numery.append(binary) if is_extra else numery
if not reg:
df[pair[2]] = (df[pair[2]] > th).astype(float)
df = df.unstack(pair[0])
test_ix = set(df.index).intersection(year)
df_test = df.loc[test_ix] if time_split else df.sample(len(test_ix))
df_data = df.drop(df_test.index)
df_data = df_data.sample(len(df_data))
for alg in ['RF', 'MT_DNN', 'SVM', 'PLS', 'KNN', 'DNN']:
if alg == 'MT_DNN':
test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in df_test.index])
data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in df_data.index])
scaler = Scaler(); scaler.fit(data_x)
test_x = scaler.transform(test_x)
data_x = scaler.transform(data_x)
data = df_data.stack().to_frame(name='Label')
test = df_test.stack().to_frame(name='Label')
data_p, test_p = DNN(data_x, df_data.values, test_x, df_test.values, out=out, reg=reg)
data['Score'] = pd.DataFrame(data_p, index=df_data.index, columns=df_data.columns).stack()
test['Score'] = pd.DataFrame(test_p, index=df_test.index, columns=df_test.columns).stack()
data.to_csv(out + alg + '_LIGAND.cv.tsv', sep='\t')
test.to_csv(out + alg + '_LIGAND.ind.tsv', sep='\t')
else:
for trg in trgs:
test_y = df_test[trg].dropna()
data_y = df_data[trg].dropna()
test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in test_y.index])
data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in data_y.index])
if alg != 'RF':
scaler = Scaler(); scaler.fit(data_x)
test_x = scaler.transform(test_x)
data_x = scaler.transform(data_x)
else:
X = np.concatenate([data_x, test_x], axis=0)
y = np.concatenate([data_y.values, test_y.values], axis=0)
Train_RF(X, y, out=out + '%s_%s.pkg' % (alg, trg), reg=reg)
data, test = data_y.to_frame(name='Label'), test_y.to_frame(name='Label')
a, b = cross_validation(data_x, data.values, test_x, test.values,
alg, out + '%s_%s' % (alg, trg), reg=reg)
data['Score'], test['Score'] = a, b
data.to_csv(out + '%s_%s.cv.tsv' % (alg, trg), sep='\t')
test.to_csv(out + '%s_%s.ind.tsv' % (alg, trg), sep='\t')
def single_task(feat, alg='RF', reg=False, is_extra=True):
df = pd.read_table('data/LIGAND_RAW.tsv').dropna(subset=pair[1:2])
df = df[df[pair[0]] == feat]
df = df[pair].set_index(pair[1])
year = df[pair[-1:]].groupby(pair[1]).min().dropna()
test = year[year[pair[-1]] > 2015].index
numery = df[pair[2]].groupby(pair[1]).mean().dropna()
comments = df[(df.Comment.str.contains('Not Active') == True)]
inhibits = df[(df.Standard_Type == 'Inhibition') & df.Standard_Relation.isin(['<', '<='])]
relations = df[df.Standard_Type.isin(['EC50', 'IC50', 'Kd', 'Ki']) & df.Standard_Relation.isin(['>', '>='])]
binary = pd.concat([comments, inhibits, relations], axis=0)
binary = binary[~binary.index.isin(numery.index)]
binary[pair[2]] = 3.99
binary = binary[pair[2]].groupby(binary.index).first()
df = numery.append(binary) if is_extra else numery
if not reg:
df = (df > th).astype(float)
df = df.sample(len(df))
print(feat, len(numery[numery >= th]), len(numery[numery < th]), len(binary))
test_ix = set(df.index).intersection(test)
test = df.loc[test_ix].dropna()
data = df.drop(test.index)
test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in test.index])
data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in data.index])
out = 'output/single/%s_%s_%s' % (alg, 'REG' if reg else 'CLS', feat)
if alg != 'RF':
scaler = Scaler(); scaler.fit(data_x)
test_x = scaler.transform(test_x)
data_x = scaler.transform(data_x)
else:
X = np.concatenate([data_x, test_x], axis=0)
y = np.concatenate([data.values, test.values], axis=0)
Train_RF(X, y[:, 0], out=out + '.pkg', reg=reg)
data, test = data.to_frame(name='Label'), test.to_frame(name='Label')
data['Score'], test['Score'] = cross_validation(data_x, data.values, test_x, test.values, alg, out, reg=reg)
data.to_csv(out + '.cv.tsv', sep='\t')
test.to_csv(out + '.ind.tsv', sep='\t')
def cross_validation(X, y, X_ind, y_ind, alg='DNN', out=None, reg=False):
if alg == 'RF':
cv, ind = RF(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg)
elif alg == 'SVM':
cv, ind = SVM(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg)
elif alg == 'KNN':
cv, ind = KNN(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg)
elif alg == 'NB':
cv, ind = NB(X, y[:, 0], X_ind, y_ind[:, 0])
elif alg == 'PLS':
cv, ind = PLS(X, y[:, 0], X_ind, y_ind[:, 0])
elif alg == 'DNN':
cv, ind = DNN(X, y, X_ind, y_ind, out=out, reg=reg)
return cv, ind
if __name__ == '__main__':
pair = ['Target_ChEMBL_ID', 'Smiles', 'pChEMBL_Value', 'Comment',
'Standard_Type', 'Standard_Relation', 'Document_Year']
BATCH_SIZE = int(2 ** 11)
N_EPOCH = 1000
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
th= 6.5
trgs = ['CHEMBL226', 'CHEMBL251', 'CHEMBL240']
for reg in [False, True]:
LR = 1e-4 if reg else 1e-5
for chembl in trgs:
single_task(chembl, 'DNN', reg=reg)
single_task(chembl, 'RF', reg=reg)
single_task(chembl, 'SVM', reg=reg)
if reg:
single_task(chembl, 'PLS', reg=reg)
else:
single_task(chembl, 'NB', reg=reg)
single_task(chembl, 'KNN', reg=reg)
mt_task('data/LIGAND_RAW.tsv', 'output/random_split/', reg=reg, time_split=False)
mt_task('data/LIGAND_RAW.tsv', 'output/time_split/', reg=reg, time_split=True)