-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathtrain_graph.py
96 lines (76 loc) · 3.08 KB
/
train_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
import torch
from rdkit import rdBase
from models.explorer import GraphExplorer
import utils
import pandas as pd
from models import GraphModel
from torch.utils.data import DataLoader
import getopt
import sys
import os
import numpy as np
import time
from shutil import copy2
np.random.seed(2)
torch.manual_seed(2)
rdBase.DisableLog('rdApp.error')
torch.set_num_threads(1)
def pretrain():
out = 'output/%s_graph_%d' % (dataset, BATCH_SIZE)
agent.fit(valid_loader, valid_loader, epochs=1000, out=out)
def train_ex():
agent.load_state_dict(torch.load(params['pr_path'] + '.pkg', map_location=utils.dev))
prior = GraphModel(voc)
prior.load_state_dict(torch.load(params['ft_path'] + '.pkg', map_location=utils.dev))
evolver = GraphExplorer(agent, mutate=prior)
evolver.batch_size = BATCH_SIZE
evolver.epsilon = float(OPT.get('-e', '1e-2'))
evolver.sigma = float(OPT.get('-b', '0.00'))
evolver.scheme = OPT.get('-s', 'WS')
evolver.repeat = 1
keys = ['A2A', 'QED']
A2A = utils.Predictor('output/env/RF_%s_CHEMBL251.pkg' % z, type=z)
QED = utils.Property('QED')
# Chose the desirability function
objs = [A2A, QED]
if evolver.scheme == 'WS':
mod1 = utils.ClippedScore(lower_x=3, upper_x=10)
mod2 = utils.ClippedScore(lower_x=0, upper_x=1.0)
ths = [0.5, 0]
else:
mod1 = utils.ClippedScore(lower_x=3, upper_x=6.5)
mod2 = utils.ClippedScore(lower_x=0, upper_x=1.0)
ths = [0.99, 0]
mods = [mod1, mod2]
evolver.env = utils.Env(objs=objs, mods=mods, keys=keys, ths=ths)
# import evolve as agent
evolver.out = root + '/%s_%s_%.0e' % (alg, evolver.scheme, evolver.epsilon)
evolver.fit(train_loader, test_loader=valid_loader)
if __name__ == "__main__":
params = {'pr_path': 'output/ligand_mf_brics_graph_256', 'ft_path': 'output/ligand_mf_brics_graph_256'}
opts, args = getopt.getopt(sys.argv[1:], "a:e:b:d:g:s:")
OPT = dict(opts)
z = OPT.get('-z', 'REG')
alg = OPT.get('-a', 'graph')
devs = OPT.get('-g', "0")
utils.devices = eval(devs) if ',' in devs else [eval(devs)]
torch.cuda.set_device(utils.devices[0])
os.environ["CUDA_VISIBLE_DEVICES"] = devs
BATCH_SIZE = int(OPT.get('-b', '128'))
dataset = OPT.get('-d', 'ligand_mf_brics')
voc = utils.VocGraph('data/voc_atom.txt', max_len=80, n_frags=4)
data = pd.read_table('data/%s_train_code.txt' % dataset)
data = torch.from_numpy(data.values).long().view(len(data), voc.max_len, -1)
train_loader = DataLoader(data, batch_size=BATCH_SIZE * 4, drop_last=True, shuffle=True)
test = pd.read_table('data/%s_test_code.txt' % dataset)
# test = test.sample(int(1e4))
test = torch.from_numpy(test.values).long().view(len(test), voc.max_len, -1)
valid_loader = DataLoader(test, batch_size=BATCH_SIZE * 10, drop_last=True, shuffle=True)
agent = GraphModel(voc).to(utils.dev)
root = 'output/%s_%s' % (alg, time.strftime('%y%m%d_%H%M%S', time.localtime()))
os.mkdir(root)
copy2(alg + '_ex.py', root)
copy2(alg + '.py', root)
pretrain()
train_ex()