-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
421 lines (372 loc) · 18.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""
Author: Benny
Date: Nov 2019
"""
import argparse
import os
import torch
import datetime
import logging
import sys
import importlib
import shutil
import provider
import numpy as np
import torch.optim as optim
from timm.scheduler import CosineLRScheduler
from pathlib import Path
from tqdm import tqdm
from dataset import S3DISDataset
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
# seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
# 'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Mug': [36, 37],
# 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27], 'Table': [47, 48, 49],
# 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
# seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
# for cat in seg_classes.keys():
# for label in seg_classes[cat]:
# seg_label_to_cat[label] = cat
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase',
'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
seg_label_to_cat[i] = cat
def inplace_relu(m):
classname = m.__class__.__name__
if classname.find('ReLU') != -1:
m.inplace=True
def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
if (y.is_cuda):
return new_y.cuda()
return new_y
def parse_args():
parser = argparse.ArgumentParser('Model')
parser.add_argument('--model', type=str, default='pt', help='model name')
parser.add_argument('--optimizer_part', type=str, default='all', help='training all parameters or optimizing the new layers only')
parser.add_argument('--batch_size', type=int, default=32, help='batch Size during training')
parser.add_argument('--epoch', default=30, type=int, help='epoch to run')
parser.add_argument('--warmup_epoch', default=10, type=int, help='warmup epoch')
parser.add_argument('--learning_rate', default=0.0002, type=float, help='initial learning rate')
parser.add_argument('--gpu', type=str, default='0', help='specify GPU devices')
# parser.add_argument('--optimizer', type=str, default='AdamW', help='Adam or SGD')
parser.add_argument('--log_dir', type=str, default='./exp', help='log path')
# parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay')
parser.add_argument('--npoint', type=int, default=2048, help='point Number')
parser.add_argument('--test_area', type=int, default=5, help='test_area')
parser.add_argument('--normal', action='store_true', default=False, help='use normals')
# parser.add_argument('--step_size', type=int, default=20, help='decay step for lr decay')
# parser.add_argument('--lr_decay', type=float, default=0.5, help='decay rate for lr decay')
parser.add_argument('--ckpts', type=str, default=None, help='ckpts')
parser.add_argument('--root', type=str, default='../data/stanford_indoor3d/', help='data root')
return parser.parse_args()
def main(args):
def log_string(str):
logger.info(str)
print(str)
# '''HYPER PARAMETER'''
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
exp_dir = Path('./log/')
exp_dir.mkdir(exist_ok=True)
exp_dir = exp_dir.joinpath('semantic_seg')
exp_dir.mkdir(exist_ok=True)
if args.log_dir is None:
exp_dir = exp_dir.joinpath(timestr)
else:
exp_dir = exp_dir.joinpath(args.log_dir)
exp_dir.mkdir(exist_ok=True)
checkpoints_dir = exp_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = exp_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
root = args.root
TRAIN_DATASET = S3DISDataset(split='train', data_root=root, num_point=args.npoint, test_area=args.test_area)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=10, drop_last=True)
weights = torch.Tensor(TRAIN_DATASET.labelweights).cuda()
TEST_DATASET = S3DISDataset(split='test', data_root=root, num_point=args.npoint, test_area=args.test_area)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=10)
log_string("The number of training data is: %d" % len(TRAIN_DATASET))
log_string("The number of test data is: %d" % len(TEST_DATASET))
num_classes = 13
# num_part = 50
'''MODEL LOADING'''
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(exp_dir))
# shutil.copy('models/pointnet2_utils.py', str(exp_dir))
classifier = MODEL.get_model(num_classes).cuda()
criterion = MODEL.get_loss().cuda()
classifier.apply(inplace_relu)
print('# generator parameters:', sum(param.numel() for param in classifier.parameters()))
start_epoch = 0
if args.ckpts is not None:
classifier.load_model_from_ckpt(args.ckpts)
## we use adamw and cosine scheduler
def add_weight_decay(model, weight_decay=1e-5, skip_list=(), optimizer_part='all'):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if optimizer_part == 'only_new':
if ('cls' in name):
if len(param.shape) == 1 or name.endswith(".bias") or 'token' in name or name in skip_list:
# print(name)
no_decay.append(param)
else:
decay.append(param)
print(name)
else:
if len(param.shape) == 1 or name.endswith(".bias") or 'token' in name or name in skip_list:
# print(name)
no_decay.append(param)
else:
decay.append(param)
# if len(param.shape) == 1 or name.endswith(".bias") or 'token' in name or name in skip_list:
# # print(name)
# no_decay.append(param)
# else:
# decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
param_groups = add_weight_decay(classifier, weight_decay=0.05, optimizer_part=args.optimizer_part)
optimizer = optim.AdamW(param_groups, lr= args.learning_rate, weight_decay=0.05 )
scheduler = CosineLRScheduler(optimizer,
t_initial=args.epoch,
t_mul=1,
lr_min=1e-6,
decay_rate=0.1,
warmup_lr_init=1e-6,
warmup_t=args.warmup_epoch,
cycle_limit=1,
t_in_epochs=True)
best_acc = 0
global_epoch = 0
best_class_avg_iou = 0
best_inctance_avg_iou = 0
best_iou = 0
classifier.zero_grad()
for epoch in range(start_epoch, args.epoch):
mean_correct = []
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
'''Adjust learning rate and BN momentum'''
classifier = classifier.train()
loss_batch = []
num_iter = 0
'''learning one epoch'''
for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):
num_iter += 1
points = points.data.numpy()
points[:, :, 0:3] = provider.random_scale_point_cloud(points[:, :, 0:3])
points[:, :, 0:3] = provider.shift_point_cloud(points[:, :, 0:3])
points = torch.Tensor(points)
points, target = points.float().cuda(), target.long().cuda()
points = points.transpose(2, 1)
seg_pred = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, num_classes)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
mean_correct.append(correct.item() / (args.batch_size * args.npoint))
loss = criterion(seg_pred, target, weights)
loss.backward()
optimizer.step()
loss_batch.append(loss.detach().cpu())
if num_iter == 1:
torch.nn.utils.clip_grad_norm_(classifier.parameters(), 10, norm_type=2)
num_iter = 0
optimizer.step()
classifier.zero_grad()
if isinstance(scheduler, list):
for item in scheduler:
item.step(epoch)
else:
scheduler.step(epoch)
train_instance_acc = np.mean(mean_correct)
loss1 = np.mean(loss_batch)
log_string('Train accuracy is: %.5f' % train_instance_acc)
log_string('Train loss: %.5f' % loss1)
log_string('lr: %.6f' % optimizer.param_groups[0]['lr'])
NUM_CLASSES = num_classes
NUM_POINT = args.npoint
BATCH_SIZE = args.batch_size
'''Evaluate on chopped scenes'''
with torch.no_grad():
num_batches = len(testDataLoader)
total_correct = 0
total_seen = 0
loss_sum = 0
labelweights = np.zeros(NUM_CLASSES)
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class = [0 for _ in range(NUM_CLASSES)]
classifier = classifier.eval()
log_string('---- EPOCH %03d EVALUATION ----' % (global_epoch + 1))
for i, (points, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):
points = points.data.numpy()
points = torch.Tensor(points)
points, target = points.float().cuda(), target.long().cuda()
points = points.transpose(2, 1)
seg_pred = classifier(points)
pred_val = seg_pred.contiguous().cpu().data.numpy()
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
batch_label = target.cpu().data.numpy()
target = target.view(-1, 1)[:, 0]
loss = criterion(seg_pred, target, weights)
loss_sum += loss
pred_val = np.argmax(pred_val, 2)
correct = np.sum((pred_val == batch_label))
total_correct += correct
total_seen += (BATCH_SIZE * NUM_POINT)
tmp, _ = np.histogram(batch_label, range(NUM_CLASSES + 1))
labelweights += tmp
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum((batch_label == l))
total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))
total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))
labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))
mIoU = np.mean(np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float) + 1e-6))
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval point avg class IoU: %f' % (mIoU))
log_string('eval point accuracy: %f' % (total_correct / float(total_seen)))
log_string('eval point avg class acc: %f' % (
np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float) + 1e-6))))
iou_per_class_str = '------- IoU --------\n'
for l in range(NUM_CLASSES):
iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (
seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l - 1],
total_correct_class[l] / float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
log_string('Eval mean loss: %f' % (loss_sum / num_batches))
log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))
if mIoU >= best_iou:
best_iou = mIoU
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s' % savepath)
state = {
'epoch': epoch,
'class_avg_iou': mIoU,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Saving model....')
log_string('Best mIoU: %f' % best_iou)
global_epoch += 1
# with torch.no_grad():
# test_metrics = {}
# total_correct = 0
# total_seen = 0
# total_seen_class = [0 for _ in range(num_classes)]
# total_correct_class = [0 for _ in range(num_classes)]
# total_iou_deno_class = [0 for _ in range(num_classes)]
# classifier = classifier.eval()
# # shape_ious = {cat: [] for cat in seg_classes.keys()}
# # seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
# #
# # for cat in seg_classes.keys():
# # for label in seg_classes[cat]:
# # seg_label_to_cat[label] = cat
#
#
# for batch_id, (points, label, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):
# cur_batch_size, NUM_POINT, _ = points.size()
# points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
# points = points.transpose(2, 1)
# seg_pred = classifier(points, to_categorical(label, num_classes))
# cur_pred_val = seg_pred.cpu().data.numpy()
# cur_pred_val_logits = cur_pred_val
# cur_pred_val = np.zeros((cur_batch_size, NUM_POINT)).astype(np.int32)
# target = target.cpu().data.numpy()
#
# for i in range(cur_batch_size):
# cat = seg_label_to_cat[target[i, 0]]
# logits = cur_pred_val_logits[i, :, :]
# cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
#
# correct = np.sum(cur_pred_val == target)
# total_correct += correct
# total_seen += (cur_batch_size * NUM_POINT)
#
# for l in range(num_part):
# total_seen_class[l] += np.sum(target == l)
# total_correct_class[l] += (np.sum((cur_pred_val == l) & (target == l)))
#
# for i in range(cur_batch_size):
# segp = cur_pred_val[i, :]
# segl = target[i, :]
# cat = seg_label_to_cat[segl[0]]
# part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
# for l in seg_classes[cat]:
# if (np.sum(segl == l) == 0) and (
# np.sum(segp == l) == 0): # part is not present, no prediction as well
# part_ious[l - seg_classes[cat][0]] = 1.0
# else:
# part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
# np.sum((segl == l) | (segp == l)))
# shape_ious[cat].append(np.mean(part_ious))
#
# all_shape_ious = []
# for cat in shape_ious.keys():
# for iou in shape_ious[cat]:
# all_shape_ious.append(iou)
# shape_ious[cat] = np.mean(shape_ious[cat])
# mean_shape_ious = np.mean(list(shape_ious.values()))
# test_metrics['accuracy'] = total_correct / float(total_seen)
# test_metrics['class_avg_accuracy'] = np.mean(
# np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
# for cat in sorted(shape_ious.keys()):
# log_string('eval mIoU of %s %f' % (cat + ' ' * (14 - len(cat)), shape_ious[cat]))
# test_metrics['class_avg_iou'] = mean_shape_ious
# test_metrics['inctance_avg_iou'] = np.mean(all_shape_ious)
#
# log_string('Epoch %d test Accuracy: %f Class avg mIOU: %f Inctance avg mIOU: %f' % (
# epoch + 1, test_metrics['accuracy'], test_metrics['class_avg_iou'], test_metrics['inctance_avg_iou']))
# if (test_metrics['inctance_avg_iou'] >= best_inctance_avg_iou):
# logger.info('Save model...')
# savepath = str(checkpoints_dir) + '/best_model.pth'
# log_string('Saving at %s' % savepath)
# state = {
# 'epoch': epoch,
# 'train_acc': train_instance_acc,
# 'test_acc': test_metrics['accuracy'],
# 'class_avg_iou': test_metrics['class_avg_iou'],
# 'inctance_avg_iou': test_metrics['inctance_avg_iou'],
# 'model_state_dict': classifier.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# }
# torch.save(state, savepath)
# log_string('Saving model....')
#
# if test_metrics['accuracy'] > best_acc:
# best_acc = test_metrics['accuracy']
# if test_metrics['class_avg_iou'] > best_class_avg_iou:
# best_class_avg_iou = test_metrics['class_avg_iou']
# if test_metrics['inctance_avg_iou'] > best_inctance_avg_iou:
# best_inctance_avg_iou = test_metrics['inctance_avg_iou']
# log_string('Best accuracy is: %.5f' % best_acc)
# log_string('Best class avg mIOU is: %.5f' % best_class_avg_iou)
# log_string('Best inctance avg mIOU is: %.5f' % best_inctance_avg_iou)
# global_epoch += 1
if __name__ == '__main__':
args = parse_args()
main(args)