-
Notifications
You must be signed in to change notification settings - Fork 2
/
misc.py
253 lines (200 loc) · 7.73 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from collections import abc
from pointnet2_ops import pointnet2_utils
def fps(data, number):
'''
data B N 3
number int
'''
fps_idx = pointnet2_utils.furthest_point_sample(data, number)
fps_data = pointnet2_utils.gather_operation(data.transpose(1, 2).contiguous(), fps_idx).transpose(1, 2).contiguous()
return fps_data
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def build_lambda_sche(opti, config):
if config.get('decay_step') is not None:
lr_lbmd = lambda e: max(config.lr_decay ** (e / config.decay_step), config.lowest_decay)
scheduler = torch.optim.lr_scheduler.LambdaLR(opti, lr_lbmd)
else:
raise NotImplementedError()
return scheduler
def build_lambda_bnsche(model, config):
if config.get('decay_step') is not None:
bnm_lmbd = lambda e: max(config.bn_momentum * config.bn_decay ** (e / config.decay_step), config.lowest_decay)
bnm_scheduler = BNMomentumScheduler(model, bnm_lmbd)
else:
raise NotImplementedError()
return bnm_scheduler
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def is_seq_of(seq, expected_type, seq_type=None):
"""Check whether it is a sequence of some type.
Args:
seq (Sequence): The sequence to be checked.
expected_type (type): Expected type of sequence items.
seq_type (type, optional): Expected sequence type.
Returns:
bool: Whether the sequence is valid.
"""
if seq_type is None:
exp_seq_type = abc.Sequence
else:
assert isinstance(seq_type, type)
exp_seq_type = seq_type
if not isinstance(seq, exp_seq_type):
return False
for item in seq:
if not isinstance(item, expected_type):
return False
return True
def set_bn_momentum_default(bn_momentum):
def fn(m):
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)):
m.momentum = bn_momentum
return fn
class BNMomentumScheduler(object):
def __init__(
self, model, bn_lambda, last_epoch=-1,
setter=set_bn_momentum_default
):
if not isinstance(model, nn.Module):
raise RuntimeError(
"Class '{}' is not a PyTorch nn Module".format(
type(model).__name__
)
)
self.model = model
self.setter = setter
self.lmbd = bn_lambda
self.step(last_epoch + 1)
self.last_epoch = last_epoch
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
self.model.apply(self.setter(self.lmbd(epoch)))
def get_momentum(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
return self.lmbd(epoch)
def seprate_point_cloud(xyz, num_points, crop, fixed_points=None, padding_zeros=False):
'''
seprate point cloud: usage : using to generate the incomplete point cloud with a setted number.
'''
_, n, c = xyz.shape
assert n == num_points
assert c == 3
if crop == num_points:
return xyz, None
INPUT = []
CROP = []
for points in xyz:
if isinstance(crop, list):
num_crop = random.randint(crop[0], crop[1])
else:
num_crop = crop
points = points.unsqueeze(0)
if fixed_points is None:
center = F.normalize(torch.randn(1, 1, 3), p=2, dim=-1).cuda()
else:
if isinstance(fixed_points, list):
fixed_point = random.sample(fixed_points, 1)[0]
else:
fixed_point = fixed_points
center = fixed_point.reshape(1, 1, 3).cuda()
distance_matrix = torch.norm(center.unsqueeze(2) - points.unsqueeze(1), p=2, dim=-1) # 1 1 2048
idx = torch.argsort(distance_matrix, dim=-1, descending=False)[0, 0] # 2048
if padding_zeros:
input_data = points.clone()
input_data[0, idx[:num_crop]] = input_data[0, idx[:num_crop]] * 0
else:
input_data = points.clone()[0, idx[num_crop:]].unsqueeze(0) # 1 N 3
crop_data = points.clone()[0, idx[:num_crop]].unsqueeze(0)
if isinstance(crop, list):
INPUT.append(fps(input_data, 2048))
CROP.append(fps(crop_data, 2048))
else:
INPUT.append(input_data)
CROP.append(crop_data)
input_data = torch.cat(INPUT, dim=0) # B N 3
crop_data = torch.cat(CROP, dim=0) # B M 3
return input_data.contiguous(), crop_data.contiguous()
def get_ptcloud_img(ptcloud):
fig = plt.figure(figsize=(8, 8))
x, z, y = ptcloud.transpose(1, 0)
ax = fig.gca(projection=Axes3D.name, adjustable='box')
ax.axis('off')
# ax.axis('scaled')
ax.view_init(90, 45)
max, min = np.max(ptcloud), np.min(ptcloud)
ax.set_xbound(min, max)
ax.set_ybound(min, max)
ax.set_zbound(min, max)
ax.scatter(x, y, z, zdir='z', c=y, cmap='jet')
fig.canvas.draw()
img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return img
def visualize_KITTI(path, data_list, titles=['input', 'pred'], cmap=['bwr', 'autumn'], zdir='y',
xlim=(-1, 1), ylim=(-1, 1), zlim=(-1, 1)):
fig = plt.figure(figsize=(6 * len(data_list), 6))
cmax = data_list[-1][:, 0].max()
for i in range(len(data_list)):
data = data_list[i][:-2048] if i == 1 else data_list[i]
color = data[:, 0] / cmax
ax = fig.add_subplot(1, len(data_list), i + 1, projection='3d')
ax.view_init(30, -120)
b = ax.scatter(data[:, 0], data[:, 1], data[:, 2], zdir=zdir, c=color, vmin=-1, vmax=1, cmap=cmap[0], s=4,
linewidth=0.05, edgecolors='black')
ax.set_title(titles[i])
ax.set_axis_off()
ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.set_zlim(zlim)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0.2, hspace=0)
if not os.path.exists(path):
os.makedirs(path)
pic_path = path + '.png'
fig.savefig(pic_path)
np.save(os.path.join(path, 'input.npy'), data_list[0].numpy())
np.save(os.path.join(path, 'pred.npy'), data_list[1].numpy())
plt.close(fig)
def random_dropping(pc, e):
up_num = max(64, 768 // (e // 50 + 1))
pc = pc
random_num = torch.randint(1, up_num, (1, 1))[0, 0]
pc = fps(pc, random_num)
padding = torch.zeros(pc.size(0), 2048 - pc.size(1), 3).to(pc.device)
pc = torch.cat([pc, padding], dim=1)
return pc
def random_scale(partial, scale_range=[0.8, 1.2]):
scale = torch.rand(1).cuda() * (scale_range[1] - scale_range[0]) + scale_range[0]
return partial * scale