-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodels.py
76 lines (61 loc) · 2.01 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torchvision.models as models
class Net(nn.Module):
def __init__(self, num_classes=100, norm=True, scale=True):
super(Net,self).__init__()
self.extractor = Extractor()
self.embedding = Embedding()
self.classifier = Classifier(num_classes)
self.s = nn.Parameter(torch.FloatTensor([10]))
self.norm = norm
self.scale = scale
def forward(self, x):
x = self.extractor(x)
x = self.embedding(x)
if self.norm:
x = self.l2_norm(x)
if self.scale:
x = self.s * x
x = self.classifier(x)
return x
def extract(self, x):
x = self.extractor(x)
x = self.embedding(x)
x = self.l2_norm(x)
return x
def l2_norm(self,input):
input_size = input.size()
buffer = torch.pow(input, 2)
normp = torch.sum(buffer, 1).add_(1e-10)
norm = torch.sqrt(normp)
_output = torch.div(input, norm.view(-1, 1).expand_as(input))
output = _output.view(input_size)
return output
def weight_norm(self):
w = self.classifier.fc.weight.data
norm = w.norm(p=2, dim=1, keepdim=True)
self.classifier.fc.weight.data = w.div(norm.expand_as(w))
class Extractor(nn.Module):
def __init__(self):
super(Extractor,self).__init__()
basenet = models.resnet50(pretrained=True)
self.extractor = nn.Sequential(*list(basenet.children())[:-1])
def forward(self, x):
x = self.extractor(x)
x = x.view(x.size(0), -1)
return x
class Embedding(nn.Module):
def __init__(self):
super(Embedding,self).__init__()
self.fc = nn.Linear(2048, 256)
def forward(self, x):
x = self.fc(x)
return x
class Classifier(nn.Module):
def __init__(self, num_classes):
super(Classifier,self).__init__()
self.fc = nn.Linear(256, num_classes, bias=False)
def forward(self, x):
x = self.fc(x)
return x