-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·162 lines (121 loc) · 5.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from tqdm import tqdm
import shutil
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import cv2
from torch.utils.data import DataLoader
from time import time
from retrain.MFPSNet import MFPSNet
from utils.loss import PerceptualLoss
from dataloader.FFHQ_train_MFPS import FFHQ_MFPS_train
from config_utils.train_args import obtain_train_args
from tensorboardX import SummaryWriter
opt = obtain_train_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
kwargs = {'num_workers': opt.threads, 'pin_memory': True, 'drop_last':True}
training_data = FFHQ_MFPS_train(opt)
training_data_loader = DataLoader(training_data, opt.batch_size, shuffle=True, num_workers=opt.threads, pin_memory=True)
print('===> Building model')
model = MFPSNet(opt)
# compute parameters
print('Total number of model parameters : {}'.format(sum([p.data.nelement() for p in model.parameters()])))
cri_perceptual = PerceptualLoss(perceptual_weight=0.005).cuda()
if cuda:
model = model.cuda()
torch.backends.cudnn.benchmark = True
if opt.solver == 'adam':
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.lr, weight_decay=0.001, betas=(0.9,0.99))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.milestones, gamma=0.5)
start_epoch = 1
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint['state_dict'], strict=True)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def train(epoch):
tbar = tqdm(training_data_loader)
model.train()
valid_iteration = len(training_data_loader) * (epoch-1)
for iteration, batch in enumerate(tbar):
hq_img, lq_img, parsemap, heatmap, facedict, name = batch
if cuda:
hq_img = hq_img.cuda()
lq_img = lq_img.cuda()
parsemap = parsemap.cuda()
heatmap = heatmap.cuda()
facedict = facedict.cuda()
train_start_time = time()
optimizer.zero_grad()
output_imgs = model(lq_img, parsemap, heatmap, facedict, opt.sum_iterations)
loss1 = 0
l1_loss1 = F.l1_loss(output_imgs[0], hq_img, reduction='mean')
loss1 += l1_loss1
l_g_percep, l_g_style = cri_perceptual(output_imgs[0], hq_img)
lp1 = 0
if l_g_percep is not None:
lp1 += l_g_percep
if l_g_style is not None:
lp1 += l_g_style
loss1 += lp1
loss2 = 0
l1_loss2 = F.l1_loss(output_imgs[1], hq_img, reduction='mean')
loss2 += l1_loss2
l_g_percep, l_g_style = cri_perceptual(output_imgs[1], hq_img)
lp2 = 0
if l_g_percep is not None:
lp2 += l_g_percep
if l_g_style is not None:
lp2 += l_g_style
loss2 += lp2
loss = loss1 + loss2
loss.backward()
optimizer.step()
writer.add_scalar('loss', loss, global_step=valid_iteration)
valid_iteration += 1
if valid_iteration % opt.show_result_feq == 0:
for i in range(opt.sum_iterations):
lq_img1 = lq_img[0].cpu().detach().numpy() * 255
output_img1 = output_imgs[i][0].cpu().detach().numpy() * 255
hq_img1 = hq_img[0].cpu().detach().numpy() * 255
output = np.concatenate((lq_img1, output_img1, hq_img1), axis=2).transpose(1, 2, 0)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
if not os.path.exists('./checkpoint/{}/retrain/tmp'.format(opt.model_name)):
os.makedirs('./checkpoint/{}/retrain/tmp'.format(opt.model_name))
cv2.imwrite('./checkpoint/{}/retrain/tmp/SRmodule_{}_{}_iter{}_{}'.format(opt.model_name, epoch, valid_iteration,i, name[0]), output)
train_end_time = time()
train_time = train_end_time - train_start_time
tbar.set_description("===> Epoch[{}]({}/{}): Loss: ({:.4f}), Time: ({:.2f}s)".format(epoch, iteration, len(training_data_loader), loss.item(), train_time))
if __name__ == '__main__':
if not os.path.exists('./checkpoint/{}/retrain'.format(opt.model_name)):
os.makedirs('./checkpoint/{}/retrain'.format(opt.model_name))
os.makedirs('./checkpoint/{}/retrain/tmp'.format(opt.model_name))
writer = SummaryWriter(log_dir='./checkpoint/{}/retrain'.format(opt.model_name))
for i in range(1, start_epoch):
scheduler.step()
for epoch in range(start_epoch, opt.nEpochs + 1):
train(epoch)
if epoch >= opt.start_save_epoch:
state = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
filename='./checkpoint/{}/retrain/checkpoint_{}.pth.tar'.format(opt.model_name, epoch)
torch.save(state, filename)
scheduler.step()