forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
122 lines (102 loc) · 4.89 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
from functools import partial
import paddle
from tqdm import tqdm
from utils import (
convert_example,
create_data_loader,
get_relation_type_dict,
reader,
unify_prompt_name,
)
from paddlenlp.datasets import MapDataset, load_dataset
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.transformers import UIE, AutoTokenizer
from paddlenlp.utils.log import logger
@paddle.no_grad()
def evaluate(model, metric, data_loader):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
"""
model.eval()
metric.reset()
for batch in tqdm(data_loader):
input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch
start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids)
start_ids = paddle.cast(start_ids, "float32")
end_ids = paddle.cast(end_ids, "float32")
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
return precision, recall, f1
def do_eval():
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = UIE.from_pretrained(args.model_path)
test_ds = load_dataset(reader, data_path=args.test_path, max_seq_len=args.max_seq_len, lazy=False)
class_dict = {}
relation_data = []
if args.debug:
for data in test_ds:
class_name = unify_prompt_name(data["prompt"])
# Only positive examples are evaluated in debug mode
if re.search(r"\[.*?\]$", data["prompt"]) and data["result_list"][0]["text"] == "未提及":
continue
if len(data["result_list"]) != 0:
if "的" not in data["prompt"]:
class_dict.setdefault(class_name, []).append(data)
else:
relation_data.append((data["prompt"], data))
relation_type_dict = get_relation_type_dict(relation_data)
else:
class_dict["all_classes"] = test_ds
trans_fn = partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len)
for key in class_dict.keys():
if args.debug:
test_ds = MapDataset(class_dict[key])
else:
test_ds = class_dict[key]
test_data_loader = create_data_loader(test_ds, mode="test", batch_size=args.batch_size, trans_fn=trans_fn)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(model, metric, test_data_loader)
logger.info("-----------------------------")
logger.info("Class Name: %s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1))
if args.debug and len(relation_type_dict.keys()) != 0:
for key in relation_type_dict.keys():
test_ds = MapDataset(relation_type_dict[key])
test_data_loader = create_data_loader(test_ds, mode="test", batch_size=args.batch_size, trans_fn=trans_fn)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(model, metric, test_data_loader)
logger.info("-----------------------------")
logger.info("Class Name: X的%s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.")
parser.add_argument("--test_path", type=str, default=None, help="The path of test set.")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--debug", action='store_true', help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.")
args = parser.parse_args()
# yapf: enable
do_eval()