-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools.py
executable file
·293 lines (247 loc) · 10.1 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import numpy as np
import os
import re
from random import shuffle
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from mpl_toolkits import mplot3d
import random
class Data:
def __init__(self,config):
self.config = config
self.train_batch_index = 0
self.test_seq_index = 0
self.resolution = config['resolution']
self.batch_size = config['batch_size']
self.train_names = config['train_names']
self.test_names = config['test_names']
self.X_train_files, self.Y_train_files = self.load_X_Y_files_paths_all( self.train_names,label='train')
self.X_test_files, self.Y_test_files = self.load_X_Y_files_paths_all(self.test_names,label='test')
print "X_train_files:",len(self.X_train_files)
print "X_test_files:",len(self.X_test_files)
self.total_train_batch_num = int(len(self.X_train_files) // self.batch_size) -1
self.total_test_seq_batch = int(len(self.X_test_files) // self.batch_size) -1
@staticmethod
def plotFromVoxels(voxels):
if len(voxels.shape)>3:
x_d = voxels.shape[0]
y_d = voxels.shape[1]
z_d = voxels.shape[2]
v = voxels[:,:,:,0]
v = np.reshape(v,(x_d,y_d,z_d))
else:
v = voxels
x, y, z = v.nonzero()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, zdir='z', c='red')
plt.show()
def load_X_Y_files_paths_all(self, obj_names, label='train'):
x_str=''
y_str=''
if label =='train':
x_str='X_train_'
y_str ='Y_train_'
elif label == 'test':
x_str = 'X_test_'
y_str = 'Y_test_'
else:
print "label error!!"
exit()
X_data_files_all = []
Y_data_files_all = []
for name in obj_names:
X_folder = self.config[x_str + name]
Y_folder = self.config[y_str + name]
X_data_files, Y_data_files = self.load_X_Y_files_paths(X_folder, Y_folder)
for X_f, Y_f in zip(X_data_files, Y_data_files):
if X_f[0:15] != Y_f[0:15]:
print "index inconsistent!!\n"
exit()
X_data_files_all.append(X_folder + X_f)
Y_data_files_all.append(Y_folder + Y_f)
return X_data_files_all, Y_data_files_all
def load_X_Y_files_paths(self,X_folder, Y_folder):
X_data_files = [X_f for X_f in sorted(os.listdir(X_folder))]
Y_data_files = [Y_f for Y_f in sorted(os.listdir(Y_folder))]
return X_data_files, Y_data_files
def voxel_grid_padding(self,a):
x_d = a.shape[0]
y_d = a.shape[1]
z_d = a.shape[2]
channel = a.shape[3]
resolution = self.resolution
size = [resolution, resolution, resolution,channel]
b = np.zeros(size)
bx_s = 0;bx_e = size[0];by_s = 0;by_e = size[1];bz_s = 0; bz_e = size[2]
ax_s = 0;ax_e = x_d;ay_s = 0;ay_e = y_d;az_s = 0;az_e = z_d
if x_d > size[0]:
ax_s = int((x_d - size[0]) / 2)
ax_e = int((x_d - size[0]) / 2) + size[0]
else:
bx_s = int((size[0] - x_d) / 2)
bx_e = int((size[0] - x_d) / 2) + x_d
if y_d > size[1]:
ay_s = int((y_d - size[1]) / 2)
ay_e = int((y_d - size[1]) / 2) + size[1]
else:
by_s = int((size[1] - y_d) / 2)
by_e = int((size[1] - y_d) / 2) + y_d
if z_d > size[2]:
az_s = int((z_d - size[2]) / 2)
az_e = int((z_d - size[2]) / 2) + size[2]
else:
bz_s = int((size[2] - z_d) / 2)
bz_e = int((size[2] - z_d) / 2) + z_d
b[bx_s:bx_e, by_s:by_e, bz_s:bz_e,:] = a[ax_s:ax_e, ay_s:ay_e, az_s:az_e, :]
return b
def load_single_voxel_grid(self,path):
temp = re.split('_', path.split('.')[-2])
x_d = int(temp[len(temp) - 3])
y_d = int(temp[len(temp) - 2])
z_d = int(temp[len(temp) - 1])
a = np.loadtxt(path)
if len(a)<=0:
print " load_single_voxel_grid error: ", path
exit()
voxel_grid = np.zeros((x_d, y_d, z_d,1))
for i in a:
voxel_grid[int(i[0]), int(i[1]), int(i[2]),0] = 1 # occupied
#Data.plotFromVoxels(voxel_grid)
voxel_grid = self.voxel_grid_padding(voxel_grid)
return voxel_grid
def load_X_Y_voxel_grids(self,X_data_files, Y_data_files):
if len(X_data_files) !=self.batch_size or len(Y_data_files)!=self.batch_size:
print "load_X_Y_voxel_grids error:", X_data_files, Y_data_files
exit()
X_voxel_grids = []
Y_voxel_grids = []
index = -1
for X_f, Y_f in zip(X_data_files, Y_data_files):
index += 1
X_voxel_grid = self.load_single_voxel_grid(X_f)
X_voxel_grids.append(X_voxel_grid)
Y_voxel_grid = self.load_single_voxel_grid(Y_f)
Y_voxel_grids.append(Y_voxel_grid)
X_voxel_grids = np.asarray(X_voxel_grids)
Y_voxel_grids = np.asarray(Y_voxel_grids)
return X_voxel_grids, Y_voxel_grids
def shuffle_X_Y_files(self, label='train'):
X_new = []; Y_new = []
if label == 'train':
X = self.X_train_files; Y = self.Y_train_files
self.train_batch_index = 0
index = range(len(X))
shuffle(index)
for i in index:
X_new.append(X[i])
Y_new.append(Y[i])
self.X_train_files = X_new
self.Y_train_files = Y_new
elif label == 'test':
X = self.X_test_files; Y = self.Y_test_files
self.test_seq_index = 0
index = range(len(X))
shuffle(index)
for i in index:
X_new.append(X[i])
Y_new.append(Y[i])
self.X_test_files = X_new
self.Y_test_files = Y_new
else:
print "shuffle_X_Y_files error!\n"
exit()
###################### voxel grids
def load_X_Y_voxel_grids_train_next_batch(self):
X_data_files = self.X_train_files[self.batch_size * self.train_batch_index:self.batch_size * (self.train_batch_index + 1)]
Y_data_files = self.Y_train_files[self.batch_size * self.train_batch_index:self.batch_size * (self.train_batch_index + 1)]
self.train_batch_index += 1
X_voxel_grids, Y_voxel_grids = self.load_X_Y_voxel_grids(X_data_files, Y_data_files)
return X_voxel_grids, Y_voxel_grids
def load_X_Y_voxel_grids_test_next_batch(self,fix_sample=False):
if fix_sample:
random.seed(45)
idx = random.sample(range(len(self.X_test_files)), self.batch_size)
X_test_files_batch = []
Y_test_files_batch = []
for i in idx:
X_test_files_batch.append(self.X_test_files[i])
Y_test_files_batch.append(self.Y_test_files[i])
X_test_batch, Y_test_batch = self.load_X_Y_voxel_grids(X_test_files_batch, Y_test_files_batch)
return X_test_batch, Y_test_batch
class Ops:
@staticmethod
def lrelu(x, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
@staticmethod
def relu(x):
return tf.nn.relu(x)
@staticmethod
def xxlu(x,name='relu'):
if name =='relu':
return Ops.relu(x)
if name =='lrelu':
return Ops.lrelu(x,leak=0.2)
@staticmethod
def variable_sum(var, name):
with tf.name_scope(name):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
@staticmethod
def variable_count():
total_para = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_para = 1
for dim in shape:
variable_para *= dim.value
total_para += variable_para
return total_para
@staticmethod
def fc(x, out_d, name):
xavier_init = tf.contrib.layers.xavier_initializer()
zero_init = tf.zeros_initializer()
in_d = x.get_shape()[1]
w = tf.get_variable(name + '_w', [in_d, out_d], initializer=xavier_init)
b = tf.get_variable(name + '_b', [out_d], initializer=zero_init)
y = tf.nn.bias_add(tf.matmul(x, w), b)
Ops.variable_sum(w, name)
return y
@staticmethod
def maxpool3d(x,k,s,pad='SAME'):
ker =[1,k,k,k,1]
str =[1,s,s,s,1]
y = tf.nn.max_pool3d(x,ksize=ker,strides=str,padding=pad)
return y
@staticmethod
def conv3d(x, k, out_c, str, name,pad='SAME'):
xavier_init = tf.contrib.layers.xavier_initializer()
zero_init = tf.zeros_initializer()
in_c = x.get_shape()[4]
w = tf.get_variable(name + '_w', [k, k, k, in_c, out_c], initializer=xavier_init)
b = tf.get_variable(name + '_b', [out_c], initializer=zero_init)
stride = [1, str, str, str, 1]
y = tf.nn.bias_add(tf.nn.conv3d(x, w, stride, pad), b)
Ops.variable_sum(w, name)
return y
@staticmethod
def deconv3d(x, k, out_c, str, name,pad='SAME'):
xavier_init = tf.contrib.layers.xavier_initializer()
zero_init = tf.zeros_initializer()
bat, in_d1, in_d2, in_d3, in_c = [int(d) for d in x.get_shape()]
w = tf.get_variable(name + '_w', [k, k, k, out_c, in_c], initializer=xavier_init)
b = tf.get_variable(name + '_b', [out_c], initializer=zero_init)
out_shape = [bat, in_d1 * str, in_d2 * str, in_d3 * str, out_c]
stride = [1, str, str, str, 1]
y = tf.nn.conv3d_transpose(x, w, output_shape=out_shape, strides=stride, padding=pad)
y = tf.nn.bias_add(y, b)
Ops.variable_sum(w, name)
return y