-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·286 lines (233 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
Author: Yan Xia
"""
import os
import sys
import argparse
import tensorflow as tf
import provider
import numpy as np
from tensorflow.python.framework import ops
import pointnet2_encoder
from PIL import Image
os.environ["CUDA_DEVICE_ORDER" ] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES" ] = "4"
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument('--log_dir', default='log_v4_128_car_pure', help='Log dir [default: log]')
parser.add_argument('--gpu', type=int, default=1, help='GPU to use [default: GPU 0]')
# parser.add_argument('--model', default='pointnet_cls', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=500, help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
FLAGS = parser.parse_args()
LOG_DIR = FLAGS.log_dir
# GPU_INDEX = FLAGS.gpu
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BATCH_SIZE = FLAGS.batch_size
BASE_LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
nn_distance_module=tf.load_op_library('./tf_nndistance_so.so')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
TRAIN_FILES = provider.getDataFiles(os.path.join(BASE_DIR, 'data/shapenet/train_files.txt'))
def print_config():
print('%s : %s' % ('log_dir', FLAGS.log_dir))
print('%s : %s' % ('num_point', FLAGS.num_point))
print('%s : %s' % ('max_epoch', FLAGS.max_epoch))
print('%s : %s' % ('batch_size', FLAGS.batch_size))
print('%s : %s' % ('learning_rate', FLAGS.learning_rate))
print('%s : %s' % ('momentum', FLAGS.momentum))
print('%s : %s' % ('optimizer', FLAGS.optimizer))
print('%s : %s' % ('decay_step', FLAGS.decay_step))
print('%s : %s' % ('decay_rate', FLAGS.decay_rate))
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def nn_distance(xyz1,xyz2):
"""
Computes the distance of nearest neighbors for a pair of point clouds
input: xyz1: (batch_size,#points_1,3) the first point cloud
input: xyz2: (batch_size,#points_2,3) the second point cloud
output: dist1: (batch_size,#point_1) distance from first to second
output: idx1: (batch_size,#point_1) nearest neighbor from first to second
output: dist2: (batch_size,#point_2) distance from second to first
output: idx2: (batch_size,#point_2) nearest neighbor from second to first
"""
return nn_distance_module.nn_distance(xyz1,xyz2)
@ops.RegisterGradient('NnDistance')
def _nn_distance_grad(op,grad_dist1,grad_idx1,grad_dist2,grad_idx2):
xyz1=op.inputs[0]
xyz2=op.inputs[1]
idx1=op.outputs[1]
idx2=op.outputs[3]
return nn_distance_module.nn_distance_grad(xyz1,xyz2,grad_dist1,idx1,grad_dist2,idx2)
def train():
with tf.Graph().as_default():
# with tf.device('/gpu:'+str(GPU_INDEX)):
print_config()
"""num_point = 1024 """
is_training_pl = tf.placeholder(dtype = tf.bool, shape=())
# keep_prob_pl = tf.placeholder(dtype = tf.float32, shape=())
"""get pointnet2 input placeholder"""
pointclouds_pl, gt_pl, img_pl = pointnet2_encoder_v4.placeholder_inputs(BATCH_SIZE, NUM_POINT)
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
"""input image and point cloud to encoder to get offset of every point"""
# point_offset, _ = pointnet2_encoder.get_model(pointclouds_pl, img_pl, is_training_pl, keep_prob_pl, bn_decay = bn_decay)
point_offset, _ = pointnet2_encoder_v4.get_model(pointclouds_pl, img_pl, is_training_pl, bn_decay = bn_decay)
'''print(point_offset.get_shape()) => (32, 1024, 3)'''
"""use offset to ori point cloud to get new point cloud"""
# pred_points = tf.add(pointclouds_pl, point_offset)
pred_points = point_offset
print 'gt_pl'
print gt_pl.shape
print type(gt_pl)
print 'pred_points'
print pred_points.shape
print type(pred_points)
"""compute new point cloend_idxud with ori pc with CD distance (loss)"""
reta, retb, retc, retd = nn_distance(gt_pl, pred_points)
# reta, retb, retc, retd = nn_distance(pointclouds_pl, pred_points)
# loss = tf.reduce_sum(reta) + tf.reduce_sum(retc)
mindist=reta
dist0 = mindist[0, :]
dists_forward = tf.reduce_mean(reta)
dists_backward = tf.reduce_mean(retc)
loss_nodecay = (dists_forward + dists_backward / 2.0) * 1000000
loss = loss_nodecay + tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) * 0.1
"""tensorborad show loss"""
tf.summary.scalar('loss', loss)
"""Get training operator"""
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
"""choose BP algorithmn"""
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
if OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
"""Add op_dic to save and restore all the variables."""
saver = tf.train.Saver()
# with tf.device('/gpu:'+str(GPU_INDEX)):
'''Create a session'''
config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
config.gpu_options.allocator_type = 'BFC'
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
'''Add summary writers'''
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),sess.graph)
# test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
'''Init variables'''
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init, {is_training_pl: True})
xnet_saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state('./log_v4_128')
if ckpt and ckpt.model_checkpoint_path:
xnet_saver.restore(sess, ckpt.model_checkpoint_path)
print '*** model is loaded ***\n'
print pointclouds_pl.shape
print gt_pl.shape
print type(gt_pl)
op_dic = {'pointclouds_pl': pointclouds_pl,
'gt_pl': gt_pl,
'is_training_pl': is_training_pl,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'img_pl':img_pl}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % epoch)
sys.stdout.flush()
train_one_epoch(sess, op_dic, train_writer)
# eval_one_epoch(sess, op_dic, test_writer)
'''Save the variables to disk.'''
if epoch % 15 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, op_dic, train_writer):
""" op_dic: dict mapping from string to tf op_dic """
is_training = True
# Shuffle train files
# train_file_idxs = {0,1,2,3,4}
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
c = 0
for fn in range(len(TRAIN_FILES)):
log_string('----- train : ' + str(fn) + '-----')
current_data, current_retrival, current_img = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:,0:NUM_POINT,:]
# current_data, current_retrival, _, current_img = provider.shuffle_data(current_data, np.squeeze(current_retrival), current_img)
current_retrival = current_retrival[:,0:NUM_POINT,:]
current_data, current_retrival, _, current_img = provider.shuffle_data(current_data, current_retrival, current_img)
file_size = current_retrival.shape[0]
num_batches = file_size / BATCH_SIZE
'''read image'''
loss_sum = 0
for batch_idx in range(int(num_batches)):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
'''get image by start_idx and end_idx'''
img_batch = current_img[start_idx:end_idx]
img_batch = img_batch.reshape((-1, 128, 128, 3))
'''next i should write a loop for input all three view into network'''
'''now i just input the first view'''
'''now img_batch shape is (BATCH_SIZE, 500, 500, 3)'''
# img_batch = img_batch[:, :, 0:256, :]
# img_batch = img_batch[:]
###########add groundtruth#######
gt_data=current_data[start_idx:end_idx, :, :]
###########add groundtruth#######
'''Augment batched 49point clouds by rotation and jittering'''
rotated_data = provider.rotate_point_cloud(current_retrival[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data)
# _photo_batch = sess.run(photo_batch)
# _photo_batch = np.random.rand(BATCH_SIZE, 256, 256, 3)
feed_dict = {op_dic['pointclouds_pl']: jittered_data,
op_dic['gt_pl']: gt_data,
op_dic['is_training_pl']: is_training,
op_dic['img_pl']: img_batch}
summary, step, _, loss_val = sess.run([op_dic['merged'], op_dic['step'], op_dic['train_op'], op_dic['loss']], feed_dict = feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
# log_string('one batch loss: %f' % loss_val)
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
if __name__ == "__main__":
train()
LOG_FOUT.close()