-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain_AttSets.py
308 lines (258 loc) · 11.9 KB
/
main_AttSets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import tensorflow as tf
import os
import shutil
import sys
import scipy.io
sys.path.append('..')
import tools as tools
import numpy as np
batch_size = 4
img_res = 127
vox_res32 = 32
total_mv = 24
GPU0 = '0'
re_train=False
single_view_train = False
multi_view_train = False
#####################################
config={}
config['batch_size'] = batch_size
config['total_mv'] = total_mv
#config['cat_names'] = ['02691156','02828884','02933112','02958343','03001627','03211117',
# '03636649','03691459','04090263','04256520','04379243','04401088','04530566']
config['cat_names'] = ['03001627']
for name in config['cat_names']:
config['X_rgb_'+name] = './Data_sample/ShapeNetRendering/'+name+'/'
config['Y_vox_'+name] = './Data_sample/ShapeNetVox32/'+name+'/'
#####################################
def attsets_fc(x, out_ele_num, name):
in_ele_num = tf.shape(x)[1]
in_ele_len = int(x.get_shape()[2])
out_ele_len = in_ele_len
####################
x_1st = x
x_1st_tp = tf.reshape(x_1st, [-1, in_ele_len])
weights_1st = tools.Ops.fc(x_1st_tp, out_d=out_ele_num*out_ele_len, name=name+'_1st')
########## option 1
weights_1st = weights_1st
########## option 2
#weights_1st = tf.nn.tanh(weights_1st)
####################
weights_1st = tf.reshape(weights_1st, [-1, in_ele_num, out_ele_num, out_ele_len])
weights_1st = tf.nn.softmax(weights_1st, 1)
x_1st = tf.tile(x_1st[:,:,None,:], [1,1,out_ele_num,1])
x_1st = x_1st*weights_1st
x_1st = tf.reduce_sum(x_1st, axis=1)
x_1st = tf.reshape(x_1st, [-1, out_ele_num*out_ele_len])
return x_1st, weights_1st
#####################################
class Network:
def __init__(self):
self.train_mod_dir = './train_mod/'
self.train_sum_dir = './train_sum/'
self.test_res_dir = './test_res/'
self.test_sum_dir = './test_sum/'
print ('re_train:', re_train)
if os.path.exists(self.test_res_dir):
if re_train:
print ('test_res_dir and files kept!')
else:
shutil.rmtree(self.test_res_dir)
os.makedirs(self.test_res_dir)
print ('test_res_dir: deleted and then created!')
else:
os.makedirs(self.test_res_dir)
print ('test_res_dir: created!')
if os.path.exists(self.train_mod_dir):
if re_train:
if os.path.exists(self.train_mod_dir + 'model.cptk.data-00000-of-00001'):
print ('model found! will be reused!')
else:
print ('model not found! error!')
#exit()
else:
shutil.rmtree(self.train_mod_dir)
os.makedirs(self.train_mod_dir)
print ('train_mod_dir: deleted and then created!')
else:
os.makedirs(self.train_mod_dir)
print ('train_mod_dir: created!')
if os.path.exists(self.train_sum_dir):
if re_train:
print ('train_sum_dir and files kept!')
else:
shutil.rmtree(self.train_sum_dir)
os.makedirs(self.train_sum_dir)
print ('train_sum_dir: deleted and then created!')
else:
os.makedirs(self.train_sum_dir)
print ('train_sum_dir: created!')
if os.path.exists(self.test_sum_dir):
if re_train:
print ('test_sum_dir and files kept!')
else:
shutil.rmtree(self.test_sum_dir)
os.makedirs(self.test_sum_dir)
print ('test_sum_dir: deleted and then created!')
else:
os.makedirs(self.test_sum_dir)
print ('test_sum_dir: created!')
def base_r2n2(self, X_rgb):
im_num = tf.shape(X_rgb)[1]
[_, _, d1, d2, cc] = X_rgb.get_shape()
X_rgb = tf.reshape(X_rgb, [-1, int(d1), int(d2), int(cc)])
en_c = [96, 128, 256, 256, 256, 256]
l1 = tools.Ops.xxlu(tools.Ops.conv2d(X_rgb, k=7, out_c=en_c[0], str=1, name='l1'), label='lrelu')
l2 = tools.Ops.xxlu(tools.Ops.conv2d(l1, k=3, out_c=en_c[0], str=1, name='l2'), label='lrelu')
l2 = tools.Ops.maxpool2d(l2, k=2, s=2, name='l2_p')
l3 = tools.Ops.xxlu(tools.Ops.conv2d(l2, k=3, out_c=en_c[1], str=1, name='l3'), label='lrelu')
l4 = tools.Ops.xxlu(tools.Ops.conv2d(l3, k=3, out_c=en_c[1], str=1, name='l4'), label='lrelu')
l22 = tools.Ops.conv2d(l2, k=1, out_c=en_c[1], str=1, name='l22')
l4 = l4 + l22
l4 = tools.Ops.maxpool2d(l4, k=2, s=2, name='l4_p')
l5 = tools.Ops.xxlu(tools.Ops.conv2d(l4, k=3, out_c=en_c[2], str=1, name='l5'), label='lrelu')
l6 = tools.Ops.xxlu(tools.Ops.conv2d(l5, k=3, out_c=en_c[2], str=1, name='l6'), label='lrelu')
l44 = tools.Ops.conv2d(l4, k=1, out_c=en_c[2], str=1, name='l44')
l6 = l6 + l44
l6 = tools.Ops.maxpool2d(l6, k=2, s=2, name='l6_p')
l7 = tools.Ops.xxlu(tools.Ops.conv2d(l6, k=3, out_c=en_c[3], str=1, name='l7'), label='lrelu')
l8 = tools.Ops.xxlu(tools.Ops.conv2d(l7, k=3, out_c=en_c[3], str=1, name='l8'), label='lrelu')
l8 = tools.Ops.maxpool2d(l8, k=2, s=2, name='l8_p')
l9 = tools.Ops.xxlu(tools.Ops.conv2d(l8, k=3, out_c=en_c[4], str=1, name='l9'), label='lrelu')
l10 = tools.Ops.xxlu(tools.Ops.conv2d(l9, k=3, out_c=en_c[4], str=1, name='l10'), label='lrelu')
l88 = tools.Ops.conv2d(l8, k=1, out_c=en_c[4], str=1, name='l88')
l10 = l10 + l88
l10 = tools.Ops.maxpool2d(l10, k=2, s=2, name='l10_p')
l11 = tools.Ops.xxlu(tools.Ops.conv2d(l10, k=3, out_c=en_c[5], str=1, name='l11'), label='lrelu')
l12 = tools.Ops.xxlu(tools.Ops.conv2d(l11, k=3, out_c=en_c[5], str=1, name='l12'), label='lrelu')
l1010 = tools.Ops.conv2d(l10, k=1, out_c=en_c[5], str=1, name='l1010_p')
l12 = l12 + l1010
l12 = tools.Ops.maxpool2d(l12, k=2, s=2, name='l12_p')
[_, d1, d2, cc] = l12.get_shape()
l12 = tf.reshape(l12, [-1, int(d1) * int(d2) * int(cc)])
fc = tools.Ops.xxlu(tools.Ops.fc(l12, out_d=1024, name='lfc1'), label='lrelu')
#### use fc attention
input = tf.reshape(fc, [-1, im_num, 1024])
latent_3d, weights = attsets_fc(input, out_ele_num=1, name='att')
####
latent_3d = tools.Ops.xxlu(tools.Ops.fc(latent_3d, out_d=4*4*4*128, name='lfc2'), label='lrelu')
latent_3d = tf.reshape(latent_3d, [-1, 4, 4, 4, 128])
####
de_c = [128, 128, 128, 64, 32, 1]
d1 = tools.Ops.xxlu(tools.Ops.deconv3d(latent_3d, k=3, out_c=de_c[1], str=2, name='ld1'), label='lrelu')
d2 = tools.Ops.xxlu(tools.Ops.deconv3d(d1, k=3, out_c=de_c[1], str=1, name='ld2'), label='lrelu')
d00 = tools.Ops.deconv3d(latent_3d, k=1, out_c=de_c[1], str=2, name='ld00')
d2 = d2 + d00
d3 = tools.Ops.xxlu(tools.Ops.deconv3d(d2, k=3, out_c=de_c[2], str=2, name='ld3'), label='lrelu')
d4 = tools.Ops.xxlu(tools.Ops.deconv3d(d3, k=3, out_c=de_c[2], str=1, name='ld4'), label='lrelu')
d22 = tools.Ops.deconv3d(d2, k=1, out_c=de_c[2], str=2, name='ld22')
d4 = d4 + d22
d5 = tools.Ops.xxlu(tools.Ops.deconv3d(d4, k=3, out_c=de_c[3], str=2, name='ld5'), label='lrelu')
d6 = tools.Ops.xxlu(tools.Ops.deconv3d(d5, k=3, out_c=de_c[3], str=1, name='ld6'), label='lrelu')
d44 = tools.Ops.deconv3d(d4, k=1, out_c=de_c[3], str=2, name='ld44')
d6 = d6 + d44
d7 = tools.Ops.xxlu(tools.Ops.deconv3d(d6, k=3, out_c=de_c[4], str=1, name='ld7'), label='lrelu')
d8 = tools.Ops.xxlu(tools.Ops.deconv3d(d7, k=3, out_c=de_c[4], str=1, name='ld8'), label='lrelu')
d77 = tools.Ops.xxlu(tools.Ops.deconv3d(d7, k=3, out_c=de_c[4], str=1, name='ld77'), label='lrelu')
d8 = d8 + d77
d11 = tools.Ops.deconv3d(d8, k=3, out_c=de_c[5], str=1, name='ld11')
y = tf.nn.sigmoid(d11)
y = tf.reshape(y, [-1, vox_res32, vox_res32, vox_res32])
return y, weights
def build_graph(self):
img_res = 127
vox_res = 32
self.X_rgb = tf.placeholder(shape=[None, None, img_res, img_res, 3], dtype=tf.float32)
self.Y_vox = tf.placeholder(shape=[None, vox_res, vox_res, vox_res], dtype=tf.float32)
self.lr = tf.placeholder(tf.float32)
with tf.variable_scope('r2n'):
self.Y_pred, self.weights = self.base_r2n2(self.X_rgb)
with tf.device('/gpu:' + GPU0):
### rec loss
Y_vox_ = tf.reshape(self.Y_vox, shape=[-1, vox_res ** 3])
Y_pred_ = tf.reshape(self.Y_pred, shape=[-1, vox_res ** 3])
self.rec_loss = tf.reduce_mean(-tf.reduce_mean(Y_vox_ * tf.log(Y_pred_ + 1e-8), reduction_indices=[1]) -
tf.reduce_mean((1 - Y_vox_) * tf.log(1 - Y_pred_ + 1e-8),reduction_indices=[1]))
sum_rec_loss = tf.summary.scalar('rec_loss', self.rec_loss)
self.sum_merged = sum_rec_loss
base_var = [var for var in tf.trainable_variables() if var.name.startswith('r2n/l')]
att_var = [var for var in tf.trainable_variables() if var.name.startswith('r2n/att')]
self.base_optim = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.rec_loss, var_list=base_var)
self.att_optim = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.rec_loss, var_list=att_var)
print ("total weights:",tools.Ops.variable_count())
self.saver = tf.train.Saver(max_to_keep=1)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.visible_device_list = GPU0
self.sess = tf.Session(config=config)
self.sum_writer_train = tf.summary.FileWriter(self.train_sum_dir, self.sess.graph)
self.sum_writer_test = tf.summary.FileWriter(self.test_sum_dir, self.sess.graph)
#######################
path = self.train_mod_dir
#path = './Model_released/' # retrain the released model
if os.path.isfile(path + 'model.cptk.data-00000-of-00001'):
print ("restoring saved model!")
self.saver.restore(self.sess, path + 'model.cptk')
else:
self.sess.run(tf.global_variables_initializer())
return 0
def train(self, data):
for epoch in range(0, 50, 1):
train_view_num = 24 ##!!!!!!!!!!!
data.shuffle_train_files(epoch, train_mv=train_view_num)
total_train_batch_num = data.total_train_batch_num
print ('total_train_batch_num:', total_train_batch_num)
for i in range(total_train_batch_num):
#### training
X_rgb_bat, Y_vox_bat = data.load_X_Y_train_next_batch(train_mv=train_view_num)
##### option 1: seperate train, seperate optimize
if epoch<=30:
single_view_train=True
multi_view_train=False
else:
single_view_train=False
multi_view_train=True
##### optiion 2: joint train, seperate optimize
#single_view_train = True
#multi_view_train = True
########### single view train
if single_view_train:
rgb = np.reshape(X_rgb_bat,[batch_size*train_view_num, 1, 127,127,3])
vox = np.tile(Y_vox_bat[:,None,:,:,:],[1,train_view_num,1,1,1])
vox = np.reshape(vox, [batch_size*train_view_num, 32,32,32])
_, rec_loss_c, sum_train = self.sess.run([self.base_optim,self.rec_loss,self.sum_merged],
feed_dict={self.X_rgb: rgb, self.Y_vox: vox, self.lr: 0.0001})
print ('ep:', epoch, 'i:', i, 'train single rec loss:', rec_loss_c)
########## multi view train
if multi_view_train:
rec_loss_c, _, sum_train = self.sess.run([self.rec_loss, self.att_optim, self.sum_merged],
feed_dict={self.X_rgb: X_rgb_bat, self.Y_vox: Y_vox_bat,self.lr: 0.0001})
print ('ep:', epoch, 'i:', i, 'train multi rec loss:', rec_loss_c)
############
if i % 100 == 0:
self.sum_writer_train.add_summary(sum_train, epoch * total_train_batch_num + i)
#### testing
if i % 400 == 0 :
X_rgb_batch, Y_vox_batch = data.load_X_Y_test_next_batch(test_mv=1)
rec_loss_te, Y_vox_test_pred, att_pred, sum_test = \
self.sess.run([self.rec_loss, self.Y_pred,self.weights, self.sum_merged],
feed_dict={self.X_rgb: X_rgb_batch, self.Y_vox: Y_vox_batch})
X_rgb_batch = X_rgb_batch.astype(np.float16)
Y_vox_batch = Y_vox_batch.astype(np.float16)
Y_vox_test_pred = Y_vox_test_pred.astype(np.float16)
att_pred = att_pred.astype(np.float16)
to_save = {'X_test':X_rgb_batch,'Y_test_pred':Y_vox_test_pred,'att_pred':att_pred,'Y_test_true':Y_vox_batch}
scipy.io.savemat(self.test_res_dir+'X_Y_pred_'+str(epoch).zfill(2)+'_'+str(i).zfill(5)+'.mat',to_save,do_compression=True)
self.sum_writer_test.add_summary(sum_test, epoch * total_train_batch_num + i)
print ('ep:', epoch, 'i:', i, 'test rec loss:', rec_loss_te)
#### model saving
if i % 200 == 0 and i > 0:
self.saver.save(self.sess, save_path=self.train_mod_dir + 'model.cptk')
print ('epoch:', epoch, 'i:', i, 'model saved!')
#### full testing
# ...
##########
if __name__ =='__main__':
net = Network()
net.build_graph()
data = tools.Data(config)
net.train(data)