-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_net.py
executable file
·254 lines (218 loc) · 8.88 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# yr copy from pointrend
"""
Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
import torch
import itertools
import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
DatasetEvaluators,
LVISEvaluator,
SemSegEvaluator,
verify_results,
)
from detectron2.solver import get_default_optimizer_params
from detectron2.solver.build import maybe_add_gradient_clipping
from modeling import add_boundaryformer_config
from modeling.data import BoxSnakeDatasetMapper
def build_sem_seg_train_aug(cfg):
augs = [
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
)
]
if cfg.INPUT.CROP.ENABLED:
augs.append(
T.RandomCrop_CategoryAreaConstraint(
cfg.INPUT.CROP.TYPE,
cfg.INPUT.CROP.SIZE,
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
)
)
if cfg.INPUT.COLOR_AUG_SSD:
augs.append(ColorAugSSDTransform(img_format=cfg.INPUT.FORMAT))
augs.append(T.RandomFlip())
return augs
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, output_dir=output_folder)
if evaluator_type == "coco":
return COCOEvaluator(dataset_name, output_dir=output_folder)
if evaluator_type == "sem_seg":
return SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
mapper = None
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg))
if cfg.MODEL.BOX_SUP.ENABLE:
mapper = BoxSnakeDatasetMapper(cfg, is_train=True)
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_optimizer(cls, cfg, model):
"""
Build an optimizer from config.
"""
overrides = {}
if cfg.MODEL.BACKBONE.NAME == "build_swin_fpn_backbone":
overrides.update({
"absolute_pos_embed": {"lr": cfg.SOLVER.BASE_LR, "weight_decay": 0.0},
"relative_position_bias_table": {"lr": cfg.SOLVER.BASE_LR, "weight_decay": 0.0},
})
params = get_default_optimizer_params(
model,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
overrides=overrides
)
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
params,
cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
)
elif (optimizer_type == "ADAMW" or optimizer_type == "ADAM") and (cfg.MODEL.BACKBONE.NAME != "build_swin_fpn_backbone"):
optimizer = maybe_add_gradient_clipping(cfg, torch.optim.AdamW)(
params,
cfg.SOLVER.BASE_LR
) # boundary former optimizer
elif (optimizer_type == "ADAMW" or optimizer_type == "ADAM") and (cfg.MODEL.BACKBONE.NAME == "build_swin_fpn_backbone"):
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), # following mask2former
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
)
else:
NotImplementedError(f"no optimizer type {optimizer_type}")
return optimizer
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_boundaryformer_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# Update the strings (xinlei's)
cfg.TRAIN_SET_STR = "+".join(cfg.DATASETS.TRAIN)
if args.config_file:
# we also want the enclosing directory.
dir_name = os.path.basename(os.path.dirname(args.config_file))
base_name = os.path.basename(args.config_file)
cfg.CFG_FILE_STR, _ = os.path.splitext(base_name)
cfg.CFG_FILE_STR = os.path.join(dir_name, base_name)
IGNORE_KEYS = ["MODEL.WEIGHTS", "SOLVER.IMS_PER_BATCH"]
if args.opts:
opt_idx = 0
kvs = []
while opt_idx < len(args.opts):
key, value = args.opts[opt_idx:(opt_idx + 2)]
if key in IGNORE_KEYS:
opt_idx += 2
continue
# no spaces.
value = value.replace(" ", "_")
kvs.append("{0}#{1}".format(key, value))
opt_idx += 2
cfg.OPT_STR = "+".join(kvs)
# compute the train output
cfg.OUTPUT_DIR = os.path.join(
cfg.OUTPUT_PREFIX, "train", cfg.TRAIN_SET_STR, cfg.CFG_FILE_STR, cfg.OPT_STR
)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)