forked from yuxua24/Data-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntroduction.py
97 lines (74 loc) · 3.45 KB
/
Introduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
from pyvis.network import Network
import networkx as nx
# ----------------------- Importing dataframes -----------------------
nodes = pd.read_csv('Dataset/MC1/Nodes.csv')
links = pd.read_csv('Dataset/MC1/PreMergeLinks.csv')
# ---------------------------------------------------------------------
HEIGHT = 700
WIDTH = 700
st.header("VAST Challenge MC-1")
st.write("---")
st.subheader("Nodes Dataframe")
# node choices
select_1, select_2, select_3 = st.columns(3)
type_unique = nodes["type"].unique()
type_choice = select_1.multiselect("Type:", type_unique)
country_unique = nodes["country"].unique()
country_choice = select_2.multiselect("Country:", country_unique)
id_unique = nodes["id"].unique()
id_choice = select_3.multiselect("ID:", id_unique)
filtered_nodes = nodes
if len(type_choice) == 0 and len(country_choice) == 0 and len(id_choice) == 0:
n = st.data_editor(nodes, width=WIDTH)
elif len(type_choice) != 0:
# get the filtered nodes from select boxes
filtered_nodes = nodes[nodes['type'].isin(type_choice)]
n = st.data_editor(filtered_nodes, width=WIDTH) # , width=WIDTH, height=HEIGHT
elif len(country_choice) != 0:
# get the filtered nodes from select boxes
filtered_nodes = nodes[nodes['country'].isin(country_choice)]
n = st.data_editor(filtered_nodes, width=WIDTH) # , width=WIDTH, height=HEIGHT
elif len(id_choice) != 0:
# get the filtered nodes from select boxes
filtered_nodes = nodes[nodes['id'].isin(id_choice)]
n = st.data_editor(filtered_nodes, width=WIDTH) # , width=WIDTH, height=HEIGHT
st.write("---")
st.subheader("Links Dataframe")
# link choices
select_l1, select_l2, select_l3, select_l4, select_l5 = st.columns(5)
type_unique = links["type"].unique()
type_choice = select_l1.multiselect("Type:", type_unique)
weight_unique = links["weight"].unique()
weight_choice = select_l2.multiselect("Weight:", weight_unique)
source_unique = links["source"].unique()
source_choice = select_l3.multiselect("Source:", source_unique)
target_unique = links["target"].unique()
target_choice = select_l4.multiselect("Destination:", target_unique)
key_unique = links["key"].unique()
key_choice = select_l5.multiselect("Key:", key_unique)
if len(type_choice) == 0 and len(weight_choice) == 0 and len(source_choice) == 0 \
and len(target_choice) == 0 and len(key_choice) == 0:
n = st.data_editor(links, width=WIDTH)
elif len(type_choice) != 0:
# get the filtered nodes from select boxes
filtered_links = links[links['type'].isin(type_choice)]
n = st.data_editor(filtered_links, width=WIDTH) # , width=WIDTH, height=HEIGHT
elif len(weight_choice) != 0:
# get the filtered nodes from select boxes
filtered_links = links[links['weight'].isin(weight_choice)]
n = st.data_editor(filtered_links, width=WIDTH) # , width=WIDTH, height=HEIGHT
elif len(source_choice) != 0:
# get the filtered nodes from select boxes
filtered_links = links[links['source'].isin(source_choice)]
n = st.data_editor(filtered_links, width=WIDTH) # , width=WIDTH, height=HEIGHT
elif len(target_choice) != 0:
# get the filtered nodes from select boxes
filtered_links = links[links['target'].isin(target_choice)]
n = st.data_editor(filtered_links, width=WIDTH)
elif len(key_choice) != 0:
# get the filtered nodes from select boxes
filtered_links = links[links['key'].isin(key_choice)]
n = st.data_editor(filtered_links, width=WIDTH)