-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RuntimeError: Mask tensor can take 0 and 1 values only #6
Comments
I originally installed the torch according to the required version, but reported the same error as that in #3.According to your comments below, I installed the torch version matching my CUDA, and then reported the above error.Now,my CUDA is 11.7. |
Hello, thanks for your interest. Firstly, "You are using 0 GPUs to train!!" may show that your cuda is unavailable. Secondly, I do not encounter this RuntimeError problem, I guess it may also be due to the torch version. |
Yes, at the beginning, I configured the environment according to your requirements. I could use 3 GPU for training, but the error in #3 would be reported. According to the answer in that question, I upgraded my pytorch version to adapt to my CUDA version(11.7), and then ran it again, it would display 0 GPU for training |
Hello, the author, I encountered some problems in reproducing your project:
When I run the pre training command "bash run/retrain. bash", an error occurs after several steps. The situation is as follows:
(hop) wuyifei@dell-Precision-7920-Tower:~/code/HOP-VLN$ bash run/pretrain.bash
You are using 0 GPUs to train!!
Loading image features from img_features/ResNet-152-imagenet.tsv
read_num 0
feature_store: True
Loading image features from img_features/ResNet-152-imagenet.tsv
read_num 0
feature_store: True
you have loaded 1069620 time steps
Loading image features from img_features/ResNet-152-imagenet.tsv
read_num 0
feature_store: True
Loading image features from img_features/ResNet-152-imagenet.tsv
read_num 0
feature_store: True
you have loaded 17420 time steps
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
Iteration: 0%|| 0/8357 [00:00<?, ?it/s]/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:137: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.uint8), value=0.0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:141: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
attention_mask = torch.full(labels.shape, 1).masked_fill_(torch.tensor(att_mask, dtype=torch.uint8), value=0)
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:142: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
labels[~masked_indices] = -1 # We only compute loss on masked tokens
/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py:142: UserWarning: masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525496686/work/aten/src/ATen/native/TensorAdvancedIndexing.cpp:1646.)
labels[~masked_indices] = -1 # We only compute loss on masked tokens
Iteration: 0%|| 0/8357 [00:00<?, ?it/s]
Traceback (most recent call last):
File "./tasks/pretrain/main.py", line 762, in
main()
File "./tasks/pretrain/main.py", line 727, in main
global_step, tr_loss = trainval(params, train_dataset, eval_dataset, model, tokenizer)
File "./tasks/pretrain/main.py", line 179, in trainval
for step, batch in epoch_iterator:
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/tqdm/std.py", line 1185, in iter
for obj in iterable:
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 628, in next
data = self._next_data()
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1333, in _next_data
return self._process_data(data)
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1359, in _process_data
data.reraise()
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/_utils.py", line 543, in reraise
raise exception
RuntimeError: Caught RuntimeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 302, in _worker_loop
data = fetcher.fetch(index)
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 58, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/wuyifei/anaconda3/envs/hop/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 58, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py", line 212, in getitem
output = self.getQuery(query, self.nag_trajs, self.nag_trajs_seq, self.nag_trajs_bnb)
File "/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py", line 460, in getQuery
masked_text_seq, masked_text_label, attention_mask = mask_tokens(text_seq, self.tok, self.args)
File "/home/wuyifei/code/HOP-VLN/tasks/pretrain/batch_loader.py", line 142, in mask_tokens
labels[~masked_indices] = -1 # We only compute loss on masked tokens
RuntimeError: Mask tensor can take 0 and 1 values only
Can you help me solve this problem? I would be grateful!
The text was updated successfully, but these errors were encountered: