-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrainer.py
273 lines (220 loc) · 10.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os, sys, pdb
import shutil
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
# import torchnet as tnt
# import torchvision.transforms as transforms
from torch.autograd import Variable
# from torch.optim import lr_scheduler
from util import AverageMeter, AveragePrecisionMeter
from datetime import datetime
# from pprint import pprint
from tqdm import tqdm
class Trainer(object):
def __init__(self, model, criterion, train_loader, val_loader, args):
self.model = model
self.criterion = criterion
self.train_loader = train_loader
self.val_loader = val_loader
self.args = args
# pprint (self.args)
print('--------Args Items----------')
for k, v in vars(self.args).items():
print('{}: {}'.format(k, v))
print('--------Args Items----------\n')
def initialize_optimizer_and_scheduler(self):
self.optimizer = torch.optim.SGD(self.model.get_config_optim(self.args.lr, self.args.lrp),
lr=self.args.lr,
momentum=self.args.momentum,
weight_decay=self.args.weight_decay)
# self.lr_scheduler = lr_scheduler.MultiStepLR(self.optimizer, self.args.epoch_step, gamma=0.1)
def initialize_meters(self):
self.meters = {}
# meters
self.meters['loss'] = AverageMeter('loss')
self.meters['ap_meter'] = AveragePrecisionMeter()
# time measure
self.meters['batch_time'] = AverageMeter('batch_time')
self.meters['data_time'] = AverageMeter('data_time')
def initialization(self, is_train=False):
""" initialize self.model and self.criterion here """
if is_train:
self.start_epoch = 0
self.epoch = 0
self.end_epoch = self.args.epochs
self.best_score = 0.
self.lr_now = self.args.lr
# initialize some settings
self.initialize_optimizer_and_scheduler()
self.initialize_meters()
# load checkpoint if args.resume is a valid checkpint file.
if os.path.isfile(self.args.resume) and self.args.resume.endswith('pth'):
self.load_checkpoint()
if torch.cuda.is_available():
cudnn.benchmark = True
self.model = torch.nn.DataParallel(self.model).cuda()
self.criterion = self.criterion.cuda()
# self.train_loader.pin_memory = True
# self.val_loader.pin_memory = True
def reset_meters(self):
for k, v in self.meters.items():
self.meters[k].reset()
def on_start_epoch(self):
self.reset_meters()
def on_end_epoch(self, is_train=False):
if is_train:
# maybe you can do something like 'print the training results' here.
return
else:
# map = self.meters['ap_meter'].value().mean()
ap = self.meters['ap_meter'].value()
print (ap)
map = ap.mean()
loss = self.meters['loss'].average()
data_time = self.meters['data_time'].average()
batch_time = self.meters['batch_time'].average()
OP, OR, OF1, CP, CR, CF1 = self.meters['ap_meter'].overall()
OP_k, OR_k, OF1_k, CP_k, CR_k, CF1_k = self.meters['ap_meter'].overall_topk(3)
print('* Test\nLoss: {loss:.4f}\t mAP: {map:.4f}\t'
'Data_time: {data_time:.4f}\t Batch_time: {batch_time:.4f}'.format(
loss=loss, map=map, data_time=data_time, batch_time=batch_time))
print('OP: {OP:.3f}\t OR: {OR:.3f}\t OF1: {OF1:.3f}\t'
'CP: {CP:.3f}\t CR: {CR:.3f}\t CF1: {CF1:.3f}'.format(
OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
print('OP_3: {OP:.3f}\t OR_3: {OR:.3f}\t OF1_3: {OF1:.3f}\t'
'CP_3: {CP:.3f}\t CR_3: {CR:.3f}\t CF1_3: {CF1:.3f}'.format(
OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k))
return map
def on_forward(self, inputs, targets, is_train):
inputs = Variable(inputs).float()
targets = Variable(targets).float()
if not is_train:
with torch.no_grad():
outputs1, outputs2 = self.model(inputs)
else:
outputs1, outputs2 = self.model(inputs)
outputs = (outputs1 + outputs2) / 2
loss = self.criterion(outputs, targets)
self.meters['loss'].update(loss.item(), inputs.size(0))
if is_train:
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=self.args.max_clip_grad_norm)
self.optimizer.step()
return outputs
def adjust_learning_rate(self):
""" Sets learning rate if it is needed """
lr_list = []
decay = 0.1 if sum(self.epoch == np.array(self.args.epoch_step)) > 0 else 1.0
for param_group in self.optimizer.param_groups:
param_group['lr'] = param_group['lr'] * decay
lr_list.append(param_group['lr'])
return np.unique(lr_list)
def train(self):
self.initialization(is_train=True)
for epoch in range(self.start_epoch, self.end_epoch):
self.lr_now = self.adjust_learning_rate()
print ('Lr: {}'.format(self.lr_now))
self.epoch = epoch
# train for one epoch
self.run_iteration(self.train_loader, is_train=True)
# evaluate on validation set
score = self.run_iteration(self.val_loader, is_train=False)
# record best score, save checkpoint and result
is_best = score > self.best_score
self.best_score = max(score, self.best_score)
checkpoint = {
'epoch': epoch + 1,
'model_name': self.args.model_name,
'state_dict': self.model.module.state_dict() if torch.cuda.is_available() else self.model.state_dict(),
'best_score': self.best_score
}
model_dir = self.args.save_dir
# assert os.path.exists(model_dir) == True
self.save_checkpoint(checkpoint, model_dir, is_best)
self.save_result(model_dir, is_best)
print(' * best mAP={best:.4f}'.format(best=self.best_score))
return self.best_score
def run_iteration(self, data_loader, is_train=True):
self.on_start_epoch()
if not is_train:
data_loader = tqdm(data_loader, desc='Validate')
self.model.eval()
else:
self.model.train()
st_time = time.time()
for i, data in enumerate(data_loader):
# measure data loading time
data_time = time.time() - st_time
self.meters['data_time'].update(data_time)
# inputs, targets, targets_gt, filenames = self.on_start_batch(data)
inputs = data['image']
targets = data['target']
# for voc
labels = targets.clone()
targets[targets==0] = 1
targets[targets==-1] = 0
if torch.cuda.is_available():
inputs = inputs.cuda()
targets = targets.cuda()
outputs = self.on_forward(inputs, targets, is_train=is_train)
# measure elapsed time
batch_time = time.time() - st_time
self.meters['batch_time'].update(batch_time)
self.meters['ap_meter'].add(outputs.data, labels.data, data['name'])
st_time = time.time()
if is_train and i % self.args.display_interval == 0:
print ('{}, {} Epoch, {} Iter, Loss: {:.4f}, Data time: {:.4f}, Batch time: {:.4f}'.format(
datetime.now().strftime('%Y-%m-%d %H:%M:%S'), self.epoch+1, i,
self.meters['loss'].value(), self.meters['data_time'].value(),
self.meters['batch_time'].value()))
return self.on_end_epoch(is_train=is_train)
def validate(self):
self.initialization(is_train=False)
map = self.run_iteration(self.val_loader, is_train=False)
model_dir = os.path.dirname(self.args.resume)
assert os.path.exists(model_dir) == True
self.save_result(model_dir, is_best=False)
return map
def load_checkpoint(self):
print("* Loading checkpoint '{}'".format(self.args.resume))
checkpoint = torch.load(self.args.resume)
self.start_epoch = checkpoint['epoch']
self.best_score = checkpoint['best_score']
model_dict = self.model.state_dict()
for k, v in checkpoint['state_dict'].items():
if k in model_dict and v.shape == model_dict[k].shape:
model_dict[k] = v
else:
print ('\tMismatched layers: {}'.format(k))
self.model.load_state_dict(model_dict)
def save_checkpoint(self, checkpoint, model_dir, is_best=False):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# filename = 'Epoch-{}.pth'.format(self.epoch)
filename = 'checkpoint.pth'
res_path = os.path.join(model_dir, filename)
print('Save checkpoint to {}'.format(res_path))
torch.save(checkpoint, res_path)
if is_best:
filename_best = 'checkpoint_best.pth'
res_path_best = os.path.join(model_dir, filename_best)
shutil.copyfile(res_path, res_path_best)
def save_result(self, model_dir, is_best=False):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# filename = 'results.csv' if not is_best else 'best_results.csv'
filename = 'results.csv'
res_path = os.path.join(model_dir, filename)
print('Save results to {}'.format(res_path))
with open(res_path, 'w') as fid:
for i in range(self.meters['ap_meter'].scores.shape[0]):
fid.write('{},{},{}\n'.format(self.meters['ap_meter'].filenames[i],
','.join(map(str,self.meters['ap_meter'].scores[i].numpy())),
','.join(map(str,self.meters['ap_meter'].targets[i].numpy()))))
if is_best:
filename_best = 'output_best.csv'
res_path_best = os.path.join(model_dir, filename_best)
shutil.copyfile(res_path, res_path_best)