-
Notifications
You must be signed in to change notification settings - Fork 2
/
detail_aggregate_loss.py
145 lines (123 loc) · 5.56 KB
/
detail_aggregate_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class DetailAggregateLoss(nn.Layer):
"""
DetailAggregateLoss's implementation based on PaddlePaddle.
The original article refers to Meituan
Fan, Mingyuan, et al. "Rethinking BiSeNet For Real-time Semantic Segmentation."
(https://arxiv.org/abs/2104.13188)
Args:
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
"""
def __init__(self, ignore_index=255):
super(DetailAggregateLoss, self).__init__()
self.ignore_index = ignore_index
self.laplacian_kernel = paddle.to_tensor(
[-1, -1, -1, -1, 8, -1, -1, -1, -1], dtype='float32').reshape(
(1, 1, 3, 3))
self.fuse_kernel = paddle.create_parameter(
[1, 3, 1, 1], dtype='float32')
def forward(self, logits, label):
"""
Args:
logits (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
Returns: loss
"""
boundary_targets = F.conv2d(
paddle.unsqueeze(
label, axis=1).astype('float32'),
self.laplacian_kernel,
padding=1)
boundary_targets = paddle.clip(boundary_targets, min=0)
boundary_targets = boundary_targets > 0.1
boundary_targets = boundary_targets.astype('float32')
boundary_targets_x2 = F.conv2d(
paddle.unsqueeze(
label, axis=1).astype('float32'),
self.laplacian_kernel,
stride=2,
padding=1)
boundary_targets_x2 = paddle.clip(boundary_targets_x2, min=0)
boundary_targets_x4 = F.conv2d(
paddle.unsqueeze(
label, axis=1).astype('float32'),
self.laplacian_kernel,
stride=4,
padding=1)
boundary_targets_x4 = paddle.clip(boundary_targets_x4, min=0)
boundary_targets_x8 = F.conv2d(
paddle.unsqueeze(
label, axis=1).astype('float32'),
self.laplacian_kernel,
stride=8,
padding=1)
boundary_targets_x8 = paddle.clip(boundary_targets_x8, min=0)
boundary_targets_x8_up = F.interpolate(
boundary_targets_x8, boundary_targets.shape[2:], mode='nearest')
boundary_targets_x4_up = F.interpolate(
boundary_targets_x4, boundary_targets.shape[2:], mode='nearest')
boundary_targets_x2_up = F.interpolate(
boundary_targets_x2, boundary_targets.shape[2:], mode='nearest')
boundary_targets_x2_up = boundary_targets_x2_up > 0.1
boundary_targets_x2_up = boundary_targets_x2_up.astype('float32')
boundary_targets_x4_up = boundary_targets_x4_up > 0.1
boundary_targets_x4_up = boundary_targets_x4_up.astype('float32')
boundary_targets_x8_up = boundary_targets_x8_up > 0.1
boundary_targets_x8_up = boundary_targets_x8_up.astype('float32')
boudary_targets_pyramids = paddle.stack(
(boundary_targets, boundary_targets_x2_up, boundary_targets_x4_up),
axis=1)
boudary_targets_pyramids = paddle.squeeze(
boudary_targets_pyramids, axis=2)
boudary_targets_pyramid = F.conv2d(boudary_targets_pyramids,
self.fuse_kernel)
boudary_targets_pyramid = boudary_targets_pyramid > 0.1
boudary_targets_pyramid = boudary_targets_pyramid.astype('float32')
if logits.shape[-1] != boundary_targets.shape[-1]:
logits = F.interpolate(
logits,
boundary_targets.shape[2:],
mode='bilinear',
align_corners=True)
bce_loss = F.binary_cross_entropy_with_logits(logits,
boudary_targets_pyramid)
dice_loss = self.fixed_dice_loss_func(
F.sigmoid(logits), boudary_targets_pyramid)
detail_loss = bce_loss + dice_loss
label.stop_gradient = True
return detail_loss
def fixed_dice_loss_func(self, input, target):
"""
simplified diceloss for DetailAggregateLoss.
"""
smooth = 1.
n = input.shape[0]
iflat = paddle.reshape(input, [n, -1])
tflat = paddle.reshape(target, [n, -1])
intersection = paddle.sum((iflat * tflat), axis=1)
loss = 1 - (
(2. * intersection + smooth) /
(paddle.sum(iflat, axis=1) + paddle.sum(tflat, axis=1) + smooth))
return paddle.mean(loss)