-
Notifications
You must be signed in to change notification settings - Fork 2
/
kl_loss.py
80 lines (68 loc) · 3.1 KB
/
kl_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class KLLoss(nn.Layer):
"""
The implementation of Kullback-Leibler divergence Loss.
Refer to https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence.
Args:
ignore_index (int64): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
temperature (float): the coefficient of kl_loss.
"""
def __init__(self, ignore_index=255, temperature=1):
super().__init__()
self.ignore_index = ignore_index
self.temperature = temperature
self.kl_loss = nn.KLDivLoss(reduction="none")
self.EPS = 1e-8
def forward(self, logit_1, logit_2, label=None):
"""
Calculate the KL loss. If the label is not None, it considers the
ignore_index in label and calculates the masked loss.
Args:
logit_1 (Tensor): Logit tensor, the data type is float32 or float64.
The shape is (N, C), where C is number of classes, and if shape is
more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
logit_2 (Tensor): Logit tensor, the data type is float32 or float64.
The shape of logit_2 and logit_1 are the same.
label (Tensor, optional): Label tensor, the data type is int64.
The shape is (N), where each value is 0 <= label[i] <= C-1, and
if shape is more than 2D, this is (N, D1, D2,..., Dk), k >= 1.
Returns:
(Tensor): The average loss.
"""
if logit_1.shape != logit_2.shape:
raise ValueError(
'The shape of logit_1 = {} must be the same as the shape of logit_2 = {}.'
.format(logit_1.shape, logit_2.shape))
logit_1 = F.log_softmax(logit_1 / self.temperature, axis=1)
logit_2 = F.softmax(logit_2 / self.temperature, axis=1)
loss = self.kl_loss(logit_1, logit_2)
loss = loss * self.temperature * self.temperature
if label is None:
avg_loss = paddle.mean(loss)
else:
mask = label != self.ignore_index
mask = paddle.cast(mask, 'float32')
mask = paddle.unsqueeze(mask, axis=1)
label.stop_gradient = True
mask.stop_gradient = True
loss = loss * mask
avg_loss = paddle.mean(loss) / (paddle.mean(mask) + self.EPS)
return avg_loss