-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_vit.py
74 lines (62 loc) · 2.65 KB
/
main_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import transforms
from utils import GradCAM, show_cam_on_image, center_crop_img
from vit_model import vit_base_patch16_224
class ReshapeTransform:
def __init__(self, model):
input_size = model.patch_embed.img_size
patch_size = model.patch_embed.patch_size
self.h = input_size[0] // patch_size[0]
self.w = input_size[1] // patch_size[1]
def __call__(self, x):
# remove cls token and reshape
# [batch_size, num_tokens, token_dim]
result = x[:, 1:, :].reshape(x.size(0),
self.h,
self.w,
x.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
# [batch_size, H, W, C] -> [batch, C, H, W]
result = result.permute(0, 3, 1, 2)
return result
def main():
model = vit_base_patch16_224()
# 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
weights_path = "./vit_base_patch16_224.pth"
model.load_state_dict(torch.load(weights_path, map_location="cpu"))
# Since the final classification is done on the class token computed in the last attention block,
# the output will not be affected by the 14x14 channels in the last layer.
# The gradient of the output with respect to them, will be 0!
# We should chose any layer before the final attention block.
target_layers = [model.blocks[-1].norm1]
data_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
# load image
img_path = "both.png"
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
img = Image.open(img_path).convert('RGB')
img = np.array(img, dtype=np.uint8)
img = center_crop_img(img, 224)
# [C, H, W]
img_tensor = data_transform(img)
# expand batch dimension
# [C, H, W] -> [N, C, H, W]
input_tensor = torch.unsqueeze(img_tensor, dim=0)
cam = GradCAM(model=model,
target_layers=target_layers,
use_cuda=False,
reshape_transform=ReshapeTransform(model))
target_category = 281 # tabby, tabby cat
# target_category = 254 # pug, pug-dog
grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(img / 255., grayscale_cam, use_rgb=True)
plt.imshow(visualization)
plt.show()
if __name__ == '__main__':
main()