Skip to content

Latest commit

 

History

History
557 lines (408 loc) · 19.6 KB

File metadata and controls

557 lines (408 loc) · 19.6 KB

Build Mega Service of Productivity Suite on Xeon

This document outlines the deployment process for OPEA Productivity Suite utilizing the GenAIComps microservice pipeline on Intel Xeon server and GenAIExamples solutions. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding, retriever, rerank, and llm. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.


🐳 Build Docker Images

First of all, you need to build Docker Images locally and install the python package of it.

1. Build Embedding Image

git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .

2. Build Retriever Image

docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .

3. Build Rerank Image

docker build --no-cache -t opea/reranking:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/rerankings/src/Dockerfile .

4. Build LLM Image

Use TGI as backend

docker build --no-cache -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .

5. Build Dataprep Image

docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .

6. Build Prompt Registry Image

docker build -t opea/promptregistry-mongo-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/prompt_registry/src/Dockerfile .

7. Build Chat History Image

docker build -t opea/chathistory-mongo-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/chathistory/mongo/Dockerfile .
cd ..

8. Build MegaService Docker Images

The Productivity Suite is composed of multiple GenAIExample reference solutions composed together.

8.1 Build ChatQnA MegaService Docker Images

git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .

8.2 Build DocSum Megaservice Docker Images

cd GenAIExamples/DocSum
docker build --no-cache -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .

8.3 Build CodeGen Megaservice Docker Images

cd GenAIExamples/CodeGen
docker build --no-cache -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .

8.4 Build FAQGen Megaservice Docker Images

cd GenAIExamples/FaqGen
docker build --no-cache -t opea/faqgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .

9. Build UI Docker Image

Build frontend Docker image that enables via below command:

Export the value of the public IP address of your Xeon server to the host_ip environment variable

cd GenAIExamples/ProductivitySuite/ui
docker build --no-cache -t opea/productivity-suite-react-ui-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile.react .

🚀 Start Microservices

Setup Environment Variables

Since the compose.yaml will consume some environment variables, you need to setup them in advance as below.

Export the value of the public IP address of your Xeon server to the host_ip environment variable

Change the External_Public_IP below with the actual IPV4 value

export host_ip="External_Public_IP"

Export the value of your Huggingface API token to the your_hf_api_token environment variable

Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value

export your_hf_api_token="Your_Huggingface_API_Token"

Append the value of the public IP address to the no_proxy list

export your_no_proxy=${your_no_proxy},"External_Public_IP"
export MONGO_HOST=${host_ip}
export MONGO_PORT=27017
export DB_NAME="test"
export COLLECTION_NAME="Conversations"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export LLM_MODEL_ID_CODEGEN="meta-llama/CodeLlama-7b-hf"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export TGI_LLM_ENDPOINT="http://${host_ip}:9009"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
export RERANK_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP_DOCSUM=${host_ip}
export LLM_SERVICE_HOST_IP_FAQGEN=${host_ip}
export LLM_SERVICE_HOST_IP_CODEGEN=${host_ip}
export LLM_SERVICE_HOST_IP_CHATQNA=${host_ip}
export TGI_LLM_ENDPOINT_CHATQNA="http://${host_ip}:9009"
export TGI_LLM_ENDPOINT_CODEGEN="http://${host_ip}:8028"
export TGI_LLM_ENDPOINT_FAQGEN="http://${host_ip}:9009"
export TGI_LLM_ENDPOINT_DOCSUM="http://${host_ip}:9009"
export BACKEND_SERVICE_ENDPOINT_CHATQNA="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete_file"
export BACKEND_SERVICE_ENDPOINT_FAQGEN="http://${host_ip}:8889/v1/faqgen"
export BACKEND_SERVICE_ENDPOINT_CODEGEN="http://${host_ip}:7778/v1/codegen"
export BACKEND_SERVICE_ENDPOINT_DOCSUM="http://${host_ip}:8890/v1/docsum"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/create"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/create"
export CHAT_HISTORY_DELETE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/delete"
export CHAT_HISTORY_GET_ENDPOINT="http://${host_ip}:6012/v1/chathistory/get"
export PROMPT_SERVICE_GET_ENDPOINT="http://${host_ip}:6018/v1/prompt/get"
export PROMPT_SERVICE_CREATE_ENDPOINT="http://${host_ip}:6018/v1/prompt/create"
export KEYCLOAK_SERVICE_ENDPOINT="http://${host_ip}:8080"
export LLM_SERVICE_HOST_PORT_FAQGEN=9002
export LLM_SERVICE_HOST_PORT_CODEGEN=9001
export LLM_SERVICE_HOST_PORT_DOCSUM=9003
export PROMPT_COLLECTION_NAME="prompt"
export RERANK_SERVER_PORT=8808
export EMBEDDING_SERVER_PORT=6006
export LLM_SERVER_PORT=9009

Note: Please replace with host_ip with you external IP address, do not use localhost.

Start all the services Docker Containers

Before running the docker compose command, you need to be in the folder that has the docker compose yaml file

cd GenAIExamples/ProductivitySuite/docker_compose/intel/cpu/xeon

docker compose -f compose.yaml up -d

🔐 Setup Keycloak

Please refer to keycloak_setup_guide for more detail related to Keycloak configuration setup.


✅ Validate Microservices

  1. TEI Embedding Service

    curl ${host_ip}:6006/embed \
        -X POST \
        -d '{"inputs":"What is Deep Learning?"}' \
        -H 'Content-Type: application/json'
  2. Embedding Microservice

    curl http://${host_ip}:6000/v1/embeddings\
      -X POST \
      -d '{"text":"hello"}' \
      -H 'Content-Type: application/json'
  3. Retriever Microservice

    To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector is determined by the embedding model. Here we use the model EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5", which vector size is 768.

    Check the vector dimension of your embedding model, set your_embedding dimension equals to it.

    export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
    curl http://${host_ip}:7000/v1/retrieval \
      -X POST \
      -d "{\"text\":\"test\",\"embedding\":${your_embedding}}" \
      -H 'Content-Type: application/json'
  4. TEI Reranking Service

    curl http://${host_ip}:8808/rerank \
        -X POST \
        -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
        -H 'Content-Type: application/json'
  5. Reranking Microservice

    curl http://${host_ip}:8000/v1/reranking\
      -X POST \
      -d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
      -H 'Content-Type: application/json'
  6. LLM backend Service (ChatQnA, DocSum, FAQGen)

    curl http://${host_ip}:9009/generate \
      -X POST \
      -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
      -H 'Content-Type: application/json'
  7. LLM backend Service (CodeGen)

    curl http://${host_ip}:8028/generate \
      -X POST \
      -d '{"inputs":"def print_hello_world():","parameters":{"max_new_tokens":256, "do_sample": true}}' \
      -H 'Content-Type: application/json'
  8. ChatQnA LLM Microservice

    curl http://${host_ip}:9000/v1/chat/completions\
      -X POST \
      -d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"stream":true}' \
      -H 'Content-Type: application/json'
  9. CodeGen LLM Microservice

    curl http://${host_ip}:9001/v1/chat/completions\
      -X POST \
      -d '{"query":"def print_hello_world():"}' \
      -H 'Content-Type: application/json'
  10. DocSum LLM Microservice

    curl http://${host_ip}:9003/v1/chat/docsum\
      -X POST \
      -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5"}' \
      -H 'Content-Type: application/json'
  11. FAQGen LLM Microservice

    curl http://${host_ip}:9002/v1/faqgen\
      -X POST \
      -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5"}' \
      -H 'Content-Type: application/json'
  12. ChatQnA MegaService

    curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
         "messages": "What is the revenue of Nike in 2023?"
         }'
  13. FAQGen MegaService

    curl http://${host_ip}:8889/v1/faqgen -H "Content-Type: application/json" -d '{
         "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
         }'
  14. DocSum MegaService

    curl http://${host_ip}:8890/v1/docsum -H "Content-Type: application/json" -d '{
         "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
         }'
  15. CodeGen MegaService

    curl http://${host_ip}:7778/v1/codegen -H "Content-Type: application/json" -d '{
         "messages": "def print_hello_world():"
         }'
  16. Dataprep Microservice

    If you want to update the default knowledge base, you can use the following commands:

    Update Knowledge Base via Local File Upload:

    curl -X POST "http://${host_ip}:6007/v1/dataprep" \
         -H "Content-Type: multipart/form-data" \
         -F "files=@./nke-10k-2023.pdf"

    This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.

    Add Knowledge Base via HTTP Links:

    curl -X POST "http://${host_ip}:6007/v1/dataprep" \
         -H "Content-Type: multipart/form-data" \
         -F 'link_list=["https://opea.dev"]'

    This command updates a knowledge base by submitting a list of HTTP links for processing.

    Also, you are able to get the file list that you uploaded:

    curl -X POST "http://${host_ip}:6007/v1/dataprep/get_file" \
         -H "Content-Type: application/json"

    To delete the file/link you uploaded:

    # delete link
    curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
         -d '{"file_path": "https://opea.dev.txt"}' \
         -H "Content-Type: application/json"
    
    # delete file
    curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
         -d '{"file_path": "nke-10k-2023.pdf"}' \
         -H "Content-Type: application/json"
    
    # delete all uploaded files and links
    curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
         -d '{"file_path": "all"}' \
         -H "Content-Type: application/json"
  17. Prompt Registry Microservice

    If you want to update the default Prompts in the application for your user, you can use the following commands:

    curl -X 'POST' \
      http://{host_ip}:6018/v1/prompt/create \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
        "prompt_text": "test prompt", "user": "test"
    }'

    Retrieve prompt from database based on user or prompt_id

    curl -X 'POST' \
      http://{host_ip}:6018/v1/prompt/get \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test"}'
    
    curl -X 'POST' \
      http://{host_ip}:6018/v1/prompt/get \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test", "prompt_id":"{prompt_id returned from save prompt route above}"}'

    Delete prompt from database based on prompt_id provided

    curl -X 'POST' \
      http://{host_ip}:6018/v1/prompt/delete \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test", "prompt_id":"{prompt_id to be deleted}"}'
  18. Chat History Microservice

    To validate the chatHistory Microservice, you can use the following commands.

    Create a sample conversation and get the message ID.

    curl -X 'POST' \
      http://${host_ip}:6012/v1/chathistory/create \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "data": {
        "messages": "test Messages", "user": "test"
      }
    }'

    Retrieve the conversation based on user or conversation id

    curl -X 'POST' \
      http://${host_ip}:6012/v1/chathistory/get \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test"}'
    
    curl -X 'POST' \
      http://${host_ip}:6012/v1/chathistory/get \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test", "id":"{Conversation id to retrieve }"}'

    Delete Conversation from database based on conversation id provided.

    curl -X 'POST' \
      http://${host_ip}:6012/v1/chathistory/delete \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "user": "test", "id":"{Conversation id to Delete}"}'

🚀 Launch the UI

To access the frontend, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the compose.yaml file as shown below:

  productivity-suite-xeon-react-ui-server:
    image: opea/productivity-suite-react-ui-server:latest
    ...
    ports:
      - "5715:80" # Map port 5715 on the host to port 80 in the container.

Here is an example of running Productivity Suite project-screenshot project-screenshot


🛠️ Key Features

Here're some of the project's features:

💬ChatQnA

  • Start a Text Chat:Initiate a text chat with the ability to input written conversations, where the dialogue content can also be customized based on uploaded files.
  • Context Awareness: The AI assistant maintains the context of the conversation, understanding references to previous statements or questions. This allows for more natural and coherent exchanges.

🎛️ Data Source

  • File Upload or Remote Link: The choice between uploading locally or copying a remote link. Chat according to uploaded knowledge base.
  • File Management:Uploaded File would get listed and user would be able add or remove file/links

Screenshots

project-screenshot

  • Clear Chat: Clear the record of the current dialog box without retaining the contents of the dialog box.
  • Chat history: Historical chat records can still be retained after refreshing, making it easier for users to view the context.
  • Conversational Chat: The application maintains a history of the conversation, allowing users to review previous messages and the AI to refer back to earlier points in the dialogue when necessary.

Screenshots

project-screenshot project-screenshot

💻 Codegen

  • Generate code: generate the corresponding code based on the current user's input.

Screenshots

project-screenshot

📚 Document Summarization

  • Summarizing Uploaded Files: Upload files from their local device, then click 'Generate Summary' to summarize the content of the uploaded file. The summary will be displayed on the 'Summary' box.
  • Summarizing Text via Pasting: Paste the text to be summarized into the text box, then click 'Generate Summary' to produce a condensed summary of the content, which will be displayed in the 'Summary' box on the right.
  • Scroll to Bottom: The summarized content will automatically scroll to the bottom.

Screenshots

project-screenshot project-screenshot

❓ FAQ Generator

  • Generate FAQs from Text via Pasting: Paste the text to into the text box, then click 'Generate FAQ' to produce a condensed FAQ of the content, which will be displayed in the 'FAQ' box below.

  • Generate FAQs from Text via txt file Upload: Upload the file in the Upload bar, then click 'Generate FAQ' to produce a condensed FAQ of the content, which will be displayed in the 'FAQ' box below.

Screenshots

project-screenshot