-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_tripletloss_inception_resnet_v1.py
488 lines (415 loc) · 24.5 KB
/
train_tripletloss_inception_resnet_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""Training a face recognizer with TensorFlow based on the FaceNet paper
FaceNet: A Unified Embedding for Face Recognition and Clustering: http://arxiv.org/abs/1503.03832
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os.path
import time
import sys
import tensorflow as tf
import numpy as np
import importlib
import itertools
import argparse
import facenet
import lfw
from tensorflow.python.ops import data_flow_ops
def main(args):
network = importlib.import_module(args.model_def)
subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist
os.makedirs(log_dir)
model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist
os.makedirs(model_dir)
# Write arguments to a text file
facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))
# Store some git revision info in a text file in the log directory
src_path, _ = os.path.split(os.path.realpath(__file__))
facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))
np.random.seed(seed=args.seed)
train_set = facenet.get_dataset(args.data_dir)
print('Model directory: %s' % model_dir)
print('Log directory: %s' % log_dir)
if args.pretrained_model:
print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))
if args.lfw_dir:
print('LFW directory: %s' % args.lfw_dir)
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
with tf.Graph().as_default():
tf.set_random_seed(args.seed)
global_step = tf.Variable(0, trainable=False)
# Placeholder for the learning rate
learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths')
labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels')
input_queue = data_flow_ops.FIFOQueue(capacity=100000,
dtypes=[tf.string, tf.int64],
shapes=[(3,), (3,)],
shared_name=None, name=None)
enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder])
nrof_preprocess_threads = 4
images_and_labels = []
for _ in range(nrof_preprocess_threads):
filenames, label = input_queue.dequeue()
images = []
for filename in tf.unstack(filenames):
file_contents = tf.read_file(filename)
image = tf.image.decode_image(file_contents, channels=3)
if args.random_crop:
image = tf.random_crop(image, [args.image_size, args.image_size, 3])
else:
image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
if args.random_flip:
image = tf.image.random_flip_left_right(image)
#pylint: disable=no-member
image.set_shape((args.image_size, args.image_size, 3))
images.append(tf.image.per_image_standardization(image))
images_and_labels.append([images, label])
image_batch, labels_batch = tf.train.batch_join(
images_and_labels, batch_size=batch_size_placeholder,
shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
capacity=4 * nrof_preprocess_threads * args.batch_size,
allow_smaller_final_batch=True)
image_batch = tf.identity(image_batch, 'image_batch')
image_batch = tf.identity(image_batch, 'input')
labels_batch = tf.identity(labels_batch, 'label_batch')
# Build the inference graph
prelogits, _ = network.inference(image_batch, args.keep_probability,
phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size,
weight_decay=args.weight_decay)
embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
# Split embeddings into anchor, positive and negative and calculate triplet loss
anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)
learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Calculate the total losses
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')
# Build a Graph that trains the model with one batch of examples and updates the model parameters
train_op = facenet.train(total_loss, global_step, args.optimizer,
learning_rate, args.moving_average_decay, tf.global_variables())
# Create a saver
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
# Start running operations on the Graph.
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# Initialize variables
sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True})
sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True})
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord, sess=sess)
with sess.as_default():
if args.pretrained_model:
print('Restoring pretrained model: %s' % args.pretrained_model)
saver.restore(sess, os.path.expanduser(args.pretrained_model))
# Training and validation loop
epoch = 0
while epoch < args.max_nrof_epochs:
step = sess.run(global_step, feed_dict=None)
epoch = step // args.epoch_size
# Train for one epoch
train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step,
embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file,
args.embedding_size, anchor, positive, negative, triplet_loss)
# Save variables and the metagraph if it doesn't exist already
save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)
# Evaluate on LFW
if args.lfw_dir:
evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size,
args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size)
return model_dir
def train(args, sess, dataset, epoch, image_paths_placeholder, labels_placeholder, labels_batch,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step,
embeddings, loss, train_op, summary_op, summary_writer, learning_rate_schedule_file,
embedding_size, anchor, positive, negative, triplet_loss):
batch_number = 0
if args.learning_rate>0.0:
lr = args.learning_rate
else:
lr = facenet.get_learning_rate_from_file(learning_rate_schedule_file, epoch)
while batch_number < args.epoch_size:
# Sample people randomly from the dataset
image_paths, num_per_class = sample_people(dataset, args.people_per_batch, args.images_per_person)
print('Running forward pass on sampled images: ', end='')
start_time = time.time()
nrof_examples = args.people_per_batch * args.images_per_person
labels_array = np.reshape(np.arange(nrof_examples),(-1,3))
image_paths_array = np.reshape(np.expand_dims(np.array(image_paths),1), (-1,3))
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array})
emb_array = np.zeros((nrof_examples, embedding_size))
nrof_batches = int(np.ceil(nrof_examples / args.batch_size))
for i in range(nrof_batches):
batch_size = min(nrof_examples-i*args.batch_size, args.batch_size)
emb, lab = sess.run([embeddings, labels_batch], feed_dict={batch_size_placeholder: batch_size,
learning_rate_placeholder: lr, phase_train_placeholder: True})
emb_array[lab,:] = emb
print('%.3f' % (time.time()-start_time))
# Select triplets based on the embeddings
print('Selecting suitable triplets for training')
triplets, nrof_random_negs, nrof_triplets = select_triplets(emb_array, num_per_class,
image_paths, args.people_per_batch, args.alpha)
selection_time = time.time() - start_time
print('(nrof_random_negs, nrof_triplets) = (%d, %d): time=%.3f seconds' %
(nrof_random_negs, nrof_triplets, selection_time))
# Perform training on the selected triplets
nrof_batches = int(np.ceil(nrof_triplets*3/args.batch_size))
triplet_paths = list(itertools.chain(*triplets))
labels_array = np.reshape(np.arange(len(triplet_paths)),(-1,3))
triplet_paths_array = np.reshape(np.expand_dims(np.array(triplet_paths),1), (-1,3))
sess.run(enqueue_op, {image_paths_placeholder: triplet_paths_array, labels_placeholder: labels_array})
nrof_examples = len(triplet_paths)
train_time = 0
i = 0
emb_array = np.zeros((nrof_examples, embedding_size))
loss_array = np.zeros((nrof_triplets,))
while i < nrof_batches:
start_time = time.time()
batch_size = min(nrof_examples-i*args.batch_size, args.batch_size)
feed_dict = {batch_size_placeholder: batch_size, learning_rate_placeholder: lr, phase_train_placeholder: True}
err, _, step, emb, lab = sess.run([loss, train_op, global_step, embeddings, labels_batch], feed_dict=feed_dict)
emb_array[lab,:] = emb
loss_array[i] = err
duration = time.time() - start_time
print('Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f' %
(epoch, batch_number+1, args.epoch_size, duration, err))
batch_number += 1
i += 1
train_time += duration
# Add validation loss and accuracy to summary
summary = tf.Summary()
#pylint: disable=maybe-no-member
summary.value.add(tag='time/selection', simple_value=selection_time)
summary_writer.add_summary(summary, step)
return step
def select_triplets(embeddings, nrof_images_per_class, image_paths, people_per_batch, alpha):
""" Select the triplets for training
"""
trip_idx = 0
emb_start_idx = 0
num_trips = 0
triplets = []
# VGG Face: Choosing good triplets is crucial and should strike a balance between
# selecting informative (i.e. challenging) examples and swamping training with examples that
# are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p, n) by sampling
# the image n at random, but only between the ones that violate the triplet loss margin. The
# latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than
# choosing the maximally violating example, as often done in structured output learning.
for i in range(people_per_batch):
nrof_images = int(nrof_images_per_class[i])
for j in range(1,nrof_images):
a_idx = emb_start_idx + j - 1
neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1)
for pair in range(j, nrof_images): # For every possible positive pair.
p_idx = emb_start_idx + pair
pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx]))
neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN
#all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr<alpha, pos_dist_sqr<neg_dists_sqr))[0] # FaceNet selection
all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction
nrof_random_negs = all_neg.shape[0]
if nrof_random_negs>0:
rnd_idx = np.random.randint(nrof_random_negs)
n_idx = all_neg[rnd_idx]
triplets.append((image_paths[a_idx], image_paths[p_idx], image_paths[n_idx]))
#print('Triplet %d: (%d, %d, %d), pos_dist=%2.6f, neg_dist=%2.6f (%d, %d, %d, %d, %d)' %
# (trip_idx, a_idx, p_idx, n_idx, pos_dist_sqr, neg_dists_sqr[n_idx], nrof_random_negs, rnd_idx, i, j, emb_start_idx))
trip_idx += 1
num_trips += 1
emb_start_idx += nrof_images
np.random.shuffle(triplets)
return triplets, num_trips, len(triplets)
def sample_people(dataset, people_per_batch, images_per_person):
nrof_images = people_per_batch * images_per_person
# Sample classes from the dataset
nrof_classes = len(dataset)
class_indices = np.arange(nrof_classes)
np.random.shuffle(class_indices)
i = 0
image_paths = []
num_per_class = []
sampled_class_indices = []
# Sample images from these classes until we have enough
while len(image_paths)<nrof_images:
class_index = class_indices[i]
nrof_images_in_class = len(dataset[class_index])
image_indices = np.arange(nrof_images_in_class)
np.random.shuffle(image_indices)
nrof_images_from_class = min(nrof_images_in_class, images_per_person, nrof_images-len(image_paths))
idx = image_indices[0:nrof_images_from_class]
image_paths_for_class = [dataset[class_index].image_paths[j] for j in idx]
sampled_class_indices += [class_index]*nrof_images_from_class
image_paths += image_paths_for_class
num_per_class.append(nrof_images_from_class)
i+=1
return image_paths, num_per_class
def evaluate(sess, image_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, batch_size,
nrof_folds, log_dir, step, summary_writer, embedding_size):
start_time = time.time()
# Run forward pass to calculate embeddings
print('Running forward pass on LFW images: ', end='')
nrof_images = len(actual_issame)*2
assert(len(image_paths)==nrof_images)
labels_array = np.reshape(np.arange(nrof_images),(-1,3))
image_paths_array = np.reshape(np.expand_dims(np.array(image_paths),1), (-1,3))
sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array})
emb_array = np.zeros((nrof_images, embedding_size))
nrof_batches = int(np.ceil(nrof_images / batch_size))
label_check_array = np.zeros((nrof_images,))
for i in range(nrof_batches):
batch_size = min(nrof_images-i*batch_size, batch_size)
emb, lab = sess.run([embeddings, labels_batch], feed_dict={batch_size_placeholder: batch_size,
learning_rate_placeholder: 0.0, phase_train_placeholder: False})
emb_array[lab,:] = emb
label_check_array[lab] = 1
print('%.3f' % (time.time()-start_time))
assert(np.all(label_check_array==1))
_, _, accuracy, val, val_std, far = lfw.evaluate(emb_array, actual_issame, nrof_folds=nrof_folds)
print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
lfw_time = time.time() - start_time
# Add validation loss and accuracy to summary
summary = tf.Summary()
#pylint: disable=maybe-no-member
summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
summary.value.add(tag='lfw/val_rate', simple_value=val)
summary.value.add(tag='time/lfw', simple_value=lfw_time)
summary_writer.add_summary(summary, step)
with open(os.path.join(log_dir,'lfw_result.txt'),'at') as f:
f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
def save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step):
# Save the model checkpoint
print('Saving variables')
start_time = time.time()
checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name)
saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False)
save_time_variables = time.time() - start_time
print('Variables saved in %.2f seconds' % save_time_variables)
metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name)
save_time_metagraph = 0
if not os.path.exists(metagraph_filename):
print('Saving metagraph')
start_time = time.time()
saver.export_meta_graph(metagraph_filename)
save_time_metagraph = time.time() - start_time
print('Metagraph saved in %.2f seconds' % save_time_metagraph)
summary = tf.Summary()
#pylint: disable=maybe-no-member
summary.value.add(tag='time/save_variables', simple_value=save_time_variables)
summary.value.add(tag='time/save_metagraph', simple_value=save_time_metagraph)
summary_writer.add_summary(summary, step)
def get_learning_rate_from_file(filename, epoch):
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split('#', 1)[0]
if line:
par = line.strip().split(':')
e = int(par[0])
lr = float(par[1])
if e <= epoch:
learning_rate = lr
else:
return learning_rate
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--logs_base_dir', type=str,
help='Directory where to write event logs.', default='~/logs/inception_resnet_v2_facenet')
parser.add_argument('--models_base_dir', type=str,
help='Directory where to write trained models and checkpoints.', default='~/models/inception_resnet_v2_facenet')
parser.add_argument('--gpu_memory_fraction', type=float,
help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)
parser.add_argument('--pretrained_model', type=str,
help='Load a pretrained model before training starts.')
parser.add_argument('--data_dir', type=str,
help='Path to the data directory containing aligned face patches. Multiple directories are separated with colon.',
default='~/datasets/casia/casia_maxpy_mtcnnalign_182_160')
parser.add_argument('--model_def', type=str,
help='Model definition. Points to a module containing the definition of the inference graph.', default='models.inception_resnet_v1')
parser.add_argument('--max_nrof_epochs', type=int,
help='Number of epochs to run.', default=500)
parser.add_argument('--batch_size', type=int,
help='Number of images to process in a batch.', default=90)
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=160)
parser.add_argument('--people_per_batch', type=int,
help='Number of people per batch.', default=45)
parser.add_argument('--images_per_person', type=int,
help='Number of images per person.', default=40)
parser.add_argument('--epoch_size', type=int,
help='Number of batches per epoch.', default=1000)
parser.add_argument('--alpha', type=float,
help='Positive to negative triplet distance margin.', default=0.2)
parser.add_argument('--embedding_size', type=int,
help='Dimensionality of the embedding.', default=128)
parser.add_argument('--random_crop',
help='Performs random cropping of training images. If false, the center image_size pixels from the training images are used. ' +
'If the size of the images in the data directory is equal to image_size no cropping is performed', action='store_true')
parser.add_argument('--random_flip',
help='Performs random horizontal flipping of training images.', action='store_true')
parser.add_argument('--keep_probability', type=float,
help='Keep probability of dropout for the fully connected layer(s).', default=1.0)
parser.add_argument('--weight_decay', type=float,
help='L2 weight regularization.', default=0.0)
parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'],
help='The optimization algorithm to use', default='ADAGRAD')
parser.add_argument('--learning_rate', type=float,
help='Initial learning rate. If set to a negative value a learning rate ' +
'schedule can be specified in the file "learning_rate_schedule.txt"', default=0.1)
parser.add_argument('--learning_rate_decay_epochs', type=int,
help='Number of epochs between learning rate decay.', default=100)
parser.add_argument('--learning_rate_decay_factor', type=float,
help='Learning rate decay factor.', default=1.0)
parser.add_argument('--moving_average_decay', type=float,
help='Exponential decay for tracking of training parameters.', default=0.9999)
parser.add_argument('--seed', type=int,
help='Random seed.', default=666)
parser.add_argument('--learning_rate_schedule_file', type=str,
help='File containing the learning rate schedule that is used when learning_rate is set to to -1.', default='data/learning_rate_schedule.txt')
# Parameters for validation on LFW
parser.add_argument('--lfw_pairs', type=str,
help='The file containing the pairs to use for validation.', default='data/pairs.txt')
parser.add_argument('--lfw_file_ext', type=str,
help='The file extension for the LFW dataset.', default='png', choices=['jpg', 'png'])
parser.add_argument('--lfw_dir', type=str,
help='Path to the data directory containing aligned face patches.', default='~/datasets/lfw/lfw_realigned/')
parser.add_argument('--lfw_nrof_folds', type=int,
help='Number of folds to use for cross validation. Mainly used for testing.', default=10)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))