-
Notifications
You must be signed in to change notification settings - Fork 1
/
aux.py
386 lines (324 loc) · 12 KB
/
aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.path as mpltPath
from numpy import pi
from scipy.interpolate import RectBivariateSpline
from numpy.linalg import inv
mu0 = 4*pi*1.0e-7 #permeability in SI unit
from scipy.sparse import eye
def get_laplace_matrix(r, z):
"""
Construct 2D Laplacian operator matrix (in cylindrical coordinate)
"""
nr, nz = r.size, z.size
rin = r[1:-1] #R grid in the inner region (excluding the boundary points)
m = nr -2 #inner grid point number
n = nz -2
mn = m*n
dr = r[1]-r[0]
dz = z[1]-z[0]
# Create a sparse matrix and set values of its elements.
A = eye(mn, format="lil") # using linked list format for storage efficiency
for II in range(mn):
j = II//m #recover the original index in Z
i = II - j*m #recover the original index in R
A[II,II] = -2/dr**2 - 2/dz**2
if i>0: A[II, II-1] = 1/dr**2 + 1/(2*rin[i]*dr)
if i<m-1: A[II, II+1] = 1/dr**2 - 1/(2*rin[i]*dr)
if j >0: A[II, II-m] = 1/dz**2
if j < n-1: A[II, II+m] = 1/dz**2
return A.tocsr() # convert to csr format for efficient operation
def find_critical(R, Z, psi, discard_xpoints=True):
"""
Find critical points
Inputs
------
R:
R(nr, nz) 2D array of major radii
Z:
Z(nr, nz) 2D array of heights
psi:
psi(nr, nz) 2D array of psi values
Returns
-------
opoint: list
List of O-points consisting of ``(R, Z, psi)`` tuples
xpoint: list
List of X-points consisting of ``(R, Z, psi)`` tuples
"""
# Get a spline interpolation function
f = RectBivariateSpline(R[:, 0], Z[0, :], psi)
# Find candidate locations, based on minimising Bp^2
Bp2 = (f(R, Z, dx=1, grid=False) ** 2 + f(R, Z, dy=1, grid=False) ** 2) / R ** 2
# Get grid resolution, which determines a reasonable tolerance
# for the Newton iteration search area
dR = R[1, 0] - R[0, 0]
dZ = Z[0, 1] - Z[0, 0]
radius_sq = 9 * (dR ** 2 + dZ ** 2)
# Find local minima
J = np.zeros([2, 2])
xpoint = []
opoint = []
nx, ny = Bp2.shape
for i in range(2, nx - 2):
for j in range(2, ny - 2):
if (
(Bp2[i, j] < Bp2[i + 1, j + 1])
and (Bp2[i, j] < Bp2[i + 1, j])
and (Bp2[i, j] < Bp2[i + 1, j - 1])
and (Bp2[i, j] < Bp2[i - 1, j + 1])
and (Bp2[i, j] < Bp2[i - 1, j])
and (Bp2[i, j] < Bp2[i - 1, j - 1])
and (Bp2[i, j] < Bp2[i, j + 1])
and (Bp2[i, j] < Bp2[i, j - 1])
):
# Found local minimum
R0 = R[i, j]
Z0 = Z[i, j]
# Use Newton iterations to find where
# both Br and Bz vanish
R1 = R0
Z1 = Z0
count = 0
while True:
Br = -f(R1, Z1, dy=1, grid=False) / R1
Bz = f(R1, Z1, dx=1, grid=False) / R1
if Br ** 2 + Bz ** 2 < 1e-6:
# Found a minimum. Classify as either
# O-point or X-point
dR = R[1, 0] - R[0, 0]
dZ = Z[0, 1] - Z[0, 0]
d2dr2 = (psi[i + 2, j] - 2.0 * psi[i, j] + psi[i - 2, j]) / (
2.0 * dR
) ** 2
d2dz2 = (psi[i, j + 2] - 2.0 * psi[i, j] + psi[i, j - 2]) / (
2.0 * dZ
) ** 2
d2drdz = (
(psi[i + 2, j + 2] - psi[i + 2, j - 2]) / (4.0 * dZ)
- (psi[i - 2, j + 2] - psi[i - 2, j - 2]) / (4.0 * dZ)
) / (4.0 * dR)
D = d2dr2 * d2dz2 - d2drdz ** 2
if D < 0.0:
# Found X-point
xpoint.append((R1, Z1, f(R1, Z1)[0][0]))
else:
# Found O-point
opoint.append((R1, Z1, f(R1, Z1)[0][0]))
break
# Jacobian matrix
# J = ( dBr/dR, dBr/dZ )
# ( dBz/dR, dBz/dZ )
J[0, 0] = -Br / R1 - f(R1, Z1, dy=1, dx=1)[0][0] / R1
J[0, 1] = -f(R1, Z1, dy=2)[0][0] / R1
J[1, 0] = -Bz / R1 + f(R1, Z1, dx=2) / R1
J[1, 1] = f(R1, Z1, dx=1, dy=1)[0][0] / R1
d = np.dot(inv(J), [Br, Bz])
R1 = R1 - d[0]
Z1 = Z1 - d[1]
count += 1
# If (R1,Z1) is too far from (R0,Z0) then discard
# or if we've taken too many iterations
if ((R1 - R0) ** 2 + (Z1 - Z0) ** 2 > radius_sq) or (count > 100):
# Discard this point
break
# Remove duplicates
def remove_dup(points):
result = []
for n, p in enumerate(points):
dup = False
for p2 in result:
if (p[0] - p2[0]) ** 2 + (p[1] - p2[1]) ** 2 < 1e-5:
dup = True # Duplicate
break
if not dup:
result.append(p) # Add to the list
return result
xpoint = remove_dup(xpoint)
opoint = remove_dup(opoint)
if len(opoint) == 0:
# Can't order primary O-point, X-point so return
print("Warning: No O points found")
return opoint, xpoint
# Find primary O-point by sorting by distance from middle of domain
Rmid = 0.5 * (R[-1, 0] + R[0, 0])
Zmid = 0.5 * (Z[0, -1] + Z[0, 0])
opoint.sort(key=lambda x: (x[0] - Rmid) ** 2 + (x[1] - Zmid) ** 2)
# Draw a line from the O-point to each X-point. Psi should be
# monotonic; discard those which are not
if discard_xpoints:
Ro, Zo, Po = opoint[0] # The primary O-point
xpt_keep = []
for xpt in xpoint:
Rx, Zx, Px = xpt
rline = np.linspace(Ro, Rx, num=50)
zline = np.linspace(Zo, Zx, num=50)
pline = f(rline, zline, grid=False)
if Px < Po:
pline *= -1.0 # Reverse, so pline is maximum at X-point
# Now check that pline is monotonic
# Tried finding maximum (argmax) and testing
# how far that is from the X-point. This can go
# wrong because psi can be quite flat near the X-point
# Instead here look for the difference in psi
# rather than the distance in space
maxp = np.amax(pline)
if (maxp - pline[-1]) / (maxp - pline[0]) > 0.001:
# More than 0.1% drop in psi from maximum to X-point
# -> Discard
continue
ind = np.argmin(pline) # Should be at O-point
if (rline[ind] - Ro) ** 2 + (zline[ind] - Zo) ** 2 > 1e-4:
# Too far, discard
continue
xpt_keep.append(xpt)
xpoint = xpt_keep
# Sort X-points by distance to primary O-point in psi space
psi_axis = opoint[0][2]
xpoint.sort(key=lambda x: (x[2] - psi_axis) ** 2)
return opoint, xpoint
def determine_lcfs_axis(r,z, first_wall, psi, nl = 400):
R, Z = np.meshgrid(r, z, indexing='ij')
psival = np.linspace(psi.min(), psi.max(), nl)
cs = plt.contour(R, Z, psi, levels = psival)
# Select out all the magnetic surfaces that do not touch the first wall
bdry = mpltPath.Path(first_wall)
xt = []
yt = []
for i, conts in enumerate(cs.allsegs):
xt.append([])
yt.append([])
for path in conts:
if path.shape[0] == 0: break
v = path
#print('path.shape=',path.shape)
inside = np.all(bdry.contains_points(v))
if inside:
xt[i].append(v[:,0])
yt[i].append(v[:,1])
# Select out the outmost contour (LCFS)
tmp = 0
for i, c in enumerate(xt):
for j, path in enumerate(c):
t = np.max(path)
if t > tmp:
tmp = t
I, J = i, j
# Select out the innermost contour (the magnetic axis)
tmp=10**9
for i, c in enumerate(xt):
for j, path in enumerate(c):
t = abs(np.max(path) -np.min(path))
if t<tmp:
tmp = t
I2, J2= i, j
r_max = xt[I2][J2].max()
r_min = xt[I2][J2].min()
z_max = yt[I2][J2].max()
z_min = yt[I2][J2].min()
raxis = (r_max + r_min)/2
zaxis = (z_max + z_min)/2
elongation = (z_max - z_min)/(r_max - r_min)
plt.close()
return np.asarray(xt[I][J]), np.asarray(yt[I][J]), psival[I], psival[I2], raxis, zaxis, elongation
def magnetic_surfaces(r,z,psi, levels0):
if levels0[1]<levels0[0]:
levels0 = np.flip(levels0)
flag = 1
else:
flag = 0
R, Z = np.meshgrid(r,z, indexing='ij')
cs = plt.contour(R,Z, psi, levels=levels0)
#print(len(cs.collections))
polygon = [ [r[1],z[1]], [r[-2],z[1]], [r[-2],z[-2]], [r[1],z[-2]] ]
bdry = mpltPath.Path(np.asarray(polygon))
xt = []
yt = []
psival = []
# get all contours that do not touch the boundary (i.e., they are closed)
for i, conts in enumerate(cs.allsegs):
for path in conts:
v = path
if np.all(bdry.contains_points(v)):
xt.append(v[:,0])
yt.append(v[:,1])
psival.append(levels0[i])
if flag==1:
xt.reverse()
yt.reverse()
psival.reverse()
plt.close()
return xt, yt #, np.asarray(psival)
def inductance(r, z, Bp_sq, r_lcfs, z_lcfs, Ip):
dr = r[1]-r[0]
dz = z[1]-z[0]
polygon = [ [r_lcfs[k], z_lcfs[k]] for k in range(r_lcfs.size) ]
bdry = mpltPath.Path(np.asarray(polygon))
s = 0.0
V = 0.0
area = 0.0
for i, rt in enumerate(r):
for j, zt in enumerate(z):
point = [[rt, zt]]
if bdry.contains_points(point):
dV = 2*pi*rt*dr*dz
s += Bp_sq[i,j]*dV
V += dV
area += dr*dz
bp_sq_vol_av = s/V
li = bp_sq_vol_av*4*pi*area/(mu0**2*Ip**2)
return li
def betap(psiN, p, r, z, psiN_2d, r_lcfs, z_lcfs, Ip):
dr = r[1]-r[0]
dz = z[1]-z[0]
dS = dr*dz
polygon = [ [r_lcfs[k], z_lcfs[k]] for k in range(r_lcfs.size) ]
bdry = mpltPath.Path(np.asarray(polygon))
pfn_spline = RectBivariateSpline(r,z, psiN_2d, kx=3,ky=3)
p_av = 0.0
S = 0.0
V = 0.0
for rt in r:
for zt in z:
point = [[rt, zt]]
if bdry.contains_points(point):
pfn = pfn_spline.ev(rt, zt, dx=0, dy=0)
pval = np.interp(pfn, psiN, p)
dV = 2*pi*rt*dS
S += dS
V += dV
p_av += pval*dS
p_av /= S
L =0
for j in range(r_lcfs.size-1): # poloidal perimeter of lcfs
L += np.sqrt((r_lcfs[j+1]-r_lcfs[j])**2+(z_lcfs[j+1]-z_lcfs[j])**2)
betap0 = p_av*2*L**2/(mu0*Ip**2)
return betap0
def partial_derivatives_2d(x,z,b):
nx,nz=x.size, z.size
b_x = np.zeros((nx,nz))
b_z = np.zeros((nx,nz))
for i in range(nx):
for j in range(nz):
i2=i+1
i1=i-1
j2=j+1
j1=j-1
if i==0: i1=i
if j==0: j1=j
if i==nx-1: i2=i
if j==nz-1: j2=j
b_x[i,j]= (b[i2,j]-b[i1,j])/(x[i2]-x[i1])
b_z[i,j]= (b[i,j2]-b[i,j1])/(z[j2]-z[j1])
return b_x, b_z
def laplace_cylindrical2d(x,z,psi):
nx,nz =x.size, z.size
psi_x, psi_z = partial_derivatives_2d(x,z, psi)
psi_xx, psi_xz = partial_derivatives_2d(x,z, psi_x)
psi_zx, psi_zz = partial_derivatives_2d(x,z, psi_z)
jphi = np.zeros((nx,nz))
for i in range(nx):
for j in range(nz):
jphi[i,j] = psi_zz[i,j] + psi_xx[i,j] - 1/x[i]*psi_x[i,j]
jphi[i,j] = -jphi[i,j]/(mu0*x[i]) #to toroidal current density
return jphi[:-1, :-1]