-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path01_fit_models.py
300 lines (254 loc) · 12.5 KB
/
01_fit_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import os
import pickle as pkl
import time
import inspect
import warnings
from collections import defaultdict
from os.path import join as oj
from typing import Callable, List, Tuple
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score, roc_auc_score, average_precision_score, f1_score, recall_score, \
precision_score, r2_score, explained_variance_score, mean_squared_error
from tqdm import tqdm
import config
import util
from imodels.util.data_util import get_clean_dataset
from imodels.util.tree_interaction_utils import (get_gt, interaction_fpr, interaction_f1,
interaction_tpr, get_interacting_features, get_important_features)
from util import ModelConfig, get_interaction_score, get_importances
from validate import get_best_accuracy
warnings.filterwarnings("ignore", message="Bins whose width")
def compare_estimators(estimators: List[ModelConfig],
dataset: Tuple,
metrics: List[Tuple[str, Callable]],
args, ) -> Tuple[dict, dict]:
"""Calculates results given estimators, dataset, and metrics.
Called in run_comparison
"""
if type(estimators) != list:
raise Exception("First argument needs to be a list of Models")
if type(metrics) != list:
raise Exception("Argument metrics needs to be a list containing ('name', callable) pairs")
# initialize results with metadata
results = defaultdict(lambda: [])
for e in estimators:
kwargs: dict = e.kwargs # dict
for k in kwargs:
results[k].append(kwargs[k])
rules = results.copy()
# scores = results.copy()
# loop over dataset
d = dataset
if args.verbose:
print("\tdataset", d[0], 'ests', estimators)
X, y, feat_names = get_clean_dataset(d[1], data_source=d[2])
# implement provided splitting strategy
X_train, X_tune, X_test, y_train, y_tune, y_test = (
util.apply_splitting_strategy(X, y, args.splitting_strategy, args.split_seed))
# loop over estimators
for model in tqdm(estimators, leave=False):
est = model.cls(**model.kwargs)
start = time.time()
fit_parameters = inspect.signature(est.fit).parameters.keys()
if 'feature_names' in fit_parameters:
est.fit(X_train, y_train, feature_names=feat_names)
else:
est.fit(X_train, y_train)
end = time.time()
# things to save
rules[d[0]].append(vars(est))
# loop over metrics
suffixes = ['_train', '_test']
datas = [(X_train, y_train), (X_test, y_test)]
if args.splitting_strategy in {'train-tune-test', 'train-tune-test-lowdata'}:
suffixes.append('_tune')
datas.append([X_tune, y_tune])
metric_results = {}
for suffix, (X_, y_) in zip(suffixes, datas):
y_pred = est.predict(X_)
if args.calc_interactions:
gt_importance, gt_interaction = get_gt(d[0])
importance = get_importances(est, X_, y_)
important_features = get_important_features(importance, len(gt_importance))
interaction = get_interaction_score(est, X_, y_)
interacting_features = get_interacting_features(interaction, len(gt_interaction) * 2)
if args.classification_or_regression == 'classification':
y_pred_proba = est.predict_proba(X_)
if y_pred_proba.size == y_.size * 2: # binary classification with 2 outputs
y_pred_proba = y_pred_proba[..., 1] # take class 1 (for pyGAM, this is skipped)
for i, (met_name, met) in enumerate(metrics):
if met is not None:
if met_name.startswith("interaction"):
if args.calc_interactions:
metric_results[met_name + suffix] = met(gt_interaction, interacting_features)
metric_results[met_name.replace("interaction", "importance") + suffix] = met(gt_importance,
important_features)
elif args.classification_or_regression == 'regression' \
or met_name in ['accuracy', 'f1', 'precision', 'recall']:
metric_results[met_name + suffix] = met(y_, y_pred)
else:
metric_results[met_name + suffix] = met(y_, y_pred_proba)
# metric_results['interaction' + suffix] = len(interacting_features.difference(gt_interaction)) / len(
# interacting_features)
# metric_results['importance' + suffix] = len(important_features.difference(gt_importance)) / len(
# important_features)
metric_results['complexity'] = util.get_complexity(est)
metric_results['time'] = end - start
metric_results.update(model.extra_aggregate_keys) # add extra keys to aggregate over
#
#
#
# scores["values"].append((,
# ))
# scores[d[0]]['interactions'].append(get_interaction_score(est, X_train, y_train))
for met_name, met_val in metric_results.items():
colname = met_name
results[colname].append(met_val)
return results, rules
def run_comparison(path: str,
dataset: Tuple,
metrics: List[Tuple[str, Callable]],
estimators: List[ModelConfig],
args):
estimator_name = estimators[0].name.split(' - ')[0]
model_comparison_file = oj(path, f'{estimator_name}_comparisons.pkl')
if args.parallel_id is not None:
model_comparison_file = f'_{args.parallel_id[0]}.'.join(model_comparison_file.split('.'))
if os.path.isfile(model_comparison_file) and not args.ignore_cache:
print(f'{estimator_name} results already computed and cached. use --ignore_cache to recompute')
return
results, rules = compare_estimators(estimators=estimators,
dataset=dataset,
metrics=metrics,
args=args)
estimators_list = [e.name for e in estimators]
metrics_list = [m[0] for m in metrics]
df = pd.DataFrame.from_dict(results)
df['split_seed'] = args.split_seed
df['estimator'] = estimators_list
df_rules = pd.DataFrame.from_dict(rules)
df_rules['split_seed'] = args.split_seed
df_rules['estimator'] = estimators_list
# scores_vals = scores["values"]
# importance = np.stack([s[0] for s in scores_vals], axis=-1)
# interaction = np.stack([s[1] for s in scores_vals], axis=-1)
"""
# note: this is only actually a mean when using multiple cv folds
for met_name, met in metrics:
colname = f'mean_{met_name}'
met_df = df.iloc[:, 1:].loc[:, [met_name in col
for col in df.iloc[:, 1:].columns]]
df[colname] = met_df.mean(axis=1)
"""
output_dict = {
# metadata
'estimators': estimators_list,
'comparison_datasets': dataset,
'metrics': metrics_list,
# "importance":importance,
# "interaction": interaction,
# actual values
'df': df,
'df_rules': df_rules,
}
pkl.dump(output_dict, open(model_comparison_file, 'wb'))
def get_metrics(classification_or_regression: str = 'classification'):
mutual = [('complexity', None), ('time', None), ("interaction_tpr", interaction_tpr),
("interaction_fpr", interaction_fpr), ("interaction_f1", interaction_f1)]
if classification_or_regression == 'classification':
return [
('rocauc', roc_auc_score),
('accuracy', accuracy_score),
('f1', f1_score),
('recall', recall_score),
('precision', precision_score),
('avg_precision', average_precision_score),
('best_accuracy', get_best_accuracy),
] + mutual
elif classification_or_regression == 'regression':
return [
('r2', r2_score),
('explained_variance', explained_variance_score),
('neg_mean_squared_error', mean_squared_error),
] + mutual
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# often-changing args
parser.add_argument('--classification_or_regression', type=str, default=None)
parser.add_argument('--model', type=str, default=None) # , default='c4')
parser.add_argument('--dataset', type=str, default=None) # default='reci')
parser.add_argument('--config', type=str, default='shrinkage')
# for multiple reruns, should support varying split_seed
parser.add_argument('--ignore_cache', action='store_true', default=False)
parser.add_argument('--splitting_strategy', type=str, default="train-test")
parser.add_argument('--verbose', action='store_true', default=True)
parser.add_argument('--parallel_id', nargs='+', type=int, default=None)
parser.add_argument('--split_seed', type=int, default=0)
parser.add_argument('--regression', action='store_true',
help='whether to use regression (sets classification_or_regression)')
parser.add_argument('--classification', action='store_true',
help='whether to use classification (sets classification_or_regression)')
parser.add_argument('--ensemble', action='store_true', default=False)
parser.add_argument('--results_path', type=str,
default=oj(os.path.dirname(os.path.realpath(__file__)), 'results'))
parser.add_argument('--calc_interactions', action='store_true',
help='whether to calculate interactions')
args = parser.parse_args()
assert args.splitting_strategy in {
'train-test', 'train-tune-test', 'train-test-lowdata', 'train-tune-test-lowdata'}
DATASETS_CLASSIFICATION, DATASETS_REGRESSION, \
ESTIMATORS_CLASSIFICATION, ESTIMATORS_REGRESSION = config.get_configs(args.config)
if args.classification:
args.classification_or_regression = 'classification'
elif args.regression:
args.classification_or_regression = 'regression'
if args.classification_or_regression is None:
if args.dataset in [d[0] for d in DATASETS_CLASSIFICATION]:
args.classification_or_regression = 'classification'
elif args.dataset in [d[0] for d in DATASETS_REGRESSION]:
args.classification_or_regression = 'regression'
else:
raise ValueError('Either args.classification_or_regression or args.dataset must be properly set!')
# basic setup
if args.classification_or_regression == 'classification':
datasets = DATASETS_CLASSIFICATION
ests = ESTIMATORS_CLASSIFICATION
elif args.classification_or_regression == 'regression':
datasets = DATASETS_REGRESSION
ests = ESTIMATORS_REGRESSION
metrics = get_metrics(args.classification_or_regression)
# filter based on args
if args.dataset:
datasets = list(filter(lambda x: args.dataset.lower() == x[0].lower(), datasets)) # strict
# dataset = list(filter(lambda x: args.dataset.lower() in x[0].lower(), dataset)) # flexible
if args.model:
# ests = list(filter(lambda x: args.model.lower() in x[0].name.lower(), ests))
ests = list(filter(lambda x: args.model.lower() == x[0].name.lower(), ests))
"""
if args.ensemble:
ests = get_ensembles_for_dataset(args.dataset, test=args.test)
else:
ests = get_estimators_for_dataset(args.dataset, test=args.test)
"""
if len(ests) == 0:
raise ValueError('No valid estimators', 'dset', args.dataset, 'models', args.model)
if len(datasets) == 0:
raise ValueError('No valid dataset!')
if args.verbose:
print('running',
'dataset', [d[0] for d in datasets],
'ests', ests)
print('\tsaving to', args.results_path)
# print('\tinput arguments:', args.dataset, [d[0] for d in DATASETS_CLASSIFICATION])
for dataset in tqdm(datasets):
path = util.get_results_path_from_args(args, dataset[0])
for est in ests:
np.random.seed(1)
run_comparison(path=path,
dataset=dataset,
metrics=metrics,
estimators=est,
args=args)
print('completed all experiments successfully!')