forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
103 lines (96 loc) · 3.51 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
def get_server_args():
parser = argparse.ArgumentParser()
parser.add_argument('--port', required=True, type=int, help='server port')
parser.add_argument(
'--logdir', type=str, help='directory to save model/tensorboard data')
parser.add_argument(
'--restore_model_path',
type=str,
help='restore model path for warm start')
parser.add_argument(
'--restore_from_one_head',
action="store_true",
help=
'If set, will restore model from one head model. If ensemble_num > 1, will assign parameters of model0 to other models.'
)
parser.add_argument(
'--restore_rpm_path', type=str, help='restore rpm path for warm start')
parser.add_argument(
'--ensemble_num',
type=int,
required=True,
help='model number to ensemble')
parser.add_argument(
'--warm_start_batchs',
type=int,
default=100,
help='collect how many batch data to warm start')
args = parser.parse_args()
return args
def get_client_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--stage',
default=0,
type=int,
help='''
stage number, which decides change times of target velocity.
Eg: stage=0 will keep target_v 1.25m/s;
stage=3 will change target velocity 3 times, just like Round2 env.'''
)
parser.add_argument('--ident', type=int, required=False, help='worker id')
parser.add_argument('--ip', type=str, required=True, help='server ip')
parser.add_argument('--port', type=int, required=True, help='server port')
parser.add_argument(
'--target_v', type=float, help='target velocity for training')
parser.add_argument(
'--act_penalty_lowerbound',
type=float,
help='lower bound of action l2 norm penalty')
parser.add_argument(
'--act_penalty_coeff',
type=float,
default=5.0,
help='coefficient of action l2 norm penalty')
parser.add_argument(
'--vel_penalty_coeff',
type=float,
default=1.0,
help='coefficient of velocity gap penalty')
parser.add_argument(
'--discrete_data',
action="store_true",
help=
'if set, discrete target velocity in last stage (args.stage), make target velocity more uniform.'
)
parser.add_argument(
'--discrete_bin',
type=int,
default=10,
help='discrete target velocity in last stage to how many intervals')
parser.add_argument(
'--reward_type',
type=str,
help=
"Choose reward type, 'RunFastest' or 'FixedTargetSpeed' or 'Round2'")
parser.add_argument(
'--debug',
action="store_true",
help='if set, will print debug information')
args = parser.parse_args()
assert args.reward_type in ['RunFastest', 'FixedTargetSpeed', 'Round2']
return args