forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
96 lines (84 loc) · 3.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import time
from env_wrapper import FrameSkip, ActionScale, PelvisBasedObs, TestReward
from multi_head_ddpg import MultiHeadDDPG
from opensim_agent import OpenSimAgent
from opensim_model import OpenSimModel
from osim.env import ProstheticsEnv
from parl.utils import logger
"""
Test model with ensemble predict
"""
def play_multi_episode(agent, episode_num=2, vis=False, seed=0):
np.random.seed(seed)
env = ProstheticsEnv(visualize=vis)
env.change_model(model='3D', difficulty=1, prosthetic=True, seed=seed)
env = TestReward(env)
env = FrameSkip(env, 4)
env = ActionScale(env)
env = PelvisBasedObs(env)
all_reward = []
for e in range(episode_num):
t = time.time()
episode_reward = 0.0
obs = env.reset(project=False)
step = 0
while True:
step += 1
batch_obs = np.expand_dims(obs, axis=0)
action = agent.ensemble_predict(batch_obs)
action = np.squeeze(action, axis=0)
obs, reward, done, info = env.step(action, project=False)
episode_reward += reward
logger.info("[step/{}]reward:{}".format(step, reward))
if done:
break
all_reward.append(episode_reward)
t = time.time() - t
logger.info(
"[episode/{}] time: {} episode_reward:{} mean_reward:{}".format(
e, t, episode_reward, np.mean(all_reward)))
logger.info("Mean reward:{}".format(np.mean(all_reward)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--restore_model_path', type=str, help='restore model path for test')
parser.add_argument(
'--vis', action="store_true", help='If set, will visualize.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument(
'--episode_num', type=int, default=1, help='Episode number to run.')
parser.add_argument('--ensemble_num', type=int, help='ensemble_num')
args = parser.parse_args()
ACT_DIM = 19
VEL_DIM = 4
OBS_DIM = 185 + VEL_DIM
GAMMA = 0.96
TAU = 0.001
models = []
for i in range(args.ensemble_num):
models.append(OpenSimModel(OBS_DIM, VEL_DIM, ACT_DIM, model_id=i))
hyperparas = {
'gamma': GAMMA,
'tau': TAU,
'ensemble_num': args.ensemble_num
}
alg = MultiHeadDDPG(models, hyperparas)
agent = OpenSimAgent(alg, OBS_DIM, ACT_DIM, args.ensemble_num)
agent.load_params(args.restore_model_path)
play_multi_episode(
agent, episode_num=args.episode_num, vis=args.vis, seed=args.seed)