-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_visualize.py
116 lines (98 loc) · 3.99 KB
/
simple_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
# Point cloud library
import pcl
import pcl.pcl_visualization
# Opencv
# import opencv
import cv2
def main():
# These are track bar initial settings adjusted to the given pointcloud to make it completely visible.
# Need to be adjusted depending on the pointcloud and its xyz limits if used with new pointclouds.
# int a = 22;
# int b = 12;
# int c= 10;
a = 22
b = 12
c = 10
# PCL Visualizer to view the pointcloud
# pcl::visualization::PCLVisualizer viewer ("Simple visualizing window");
viewer = pcl.pcl_visualization.PCLVisualizering()
# int main (int argc, char** argv)
# {
# pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);
# pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGBA>);
# if (pcl::io::loadPLYFile<pcl::PointXYZRGBA> (argv[1], *cloud) == -1) //* load the ply file from command line
# {
# PCL_ERROR ("Couldn't load the file\n");
# return (-1);
# }
cloud = pcl.load("rabbit.pcd")
#cloud = pcl.load("Tile_173078_LD_010_017_L22.obj")
# pcl::copyPointCloud( *cloud,*cloud_filtered);
# cloud_filtered = cloud.copyPointCloud()
cloud_filtered = cloud
# float i
# float j
# float k
# cv::namedWindow("picture");
# // Creating trackbars uisng opencv to control the pcl filter limits
# cvCreateTrackbar("X_limit", "picture", &a, 30, NULL);
# cvCreateTrackbar("Y_limit", "picture", &b, 30, NULL);
# cvCreateTrackbar("Z_limit", "picture", &c, 30, NULL);
# cv2.CreateTrackbar("X_limit", "picture", a, 30)
# cv2.CreateTrackbar("Y_limit", "picture", b, 30)
# cv2.CreateTrackbar("Z_limit", "picture", c, 30)
# // Starting the while loop where we continually filter with limits using trackbars and display pointcloud
# char last_c = 0;
last_c = 0
# while(true && (last_c != 27))
while last_c != 27:
# pcl::copyPointCloud(*cloud_filtered, *cloud);
# // i,j,k Need to be adjusted depending on the pointcloud and its xyz limits if used with new pointclouds.
i = 0.1 * a
j = 0.1 * b
k = 0.1 * c
# Printing to ensure that the passthrough filter values are changing if we move trackbars.
# cout << "i = " << i << " j = " << j << " k = " << k << endl;
print("i = " + str(i) + " j = " + str(j) + " k = " + str(k))
# Applying passthrough filters with XYZ limits
# pcl::PassThrough<pcl::PointXYZRGBA> pass;
# pass.setInputCloud (cloud);
# pass.setFilterFieldName ("y");
# // pass.setFilterLimits (-0.1, 0.1);
# pass.setFilterLimits (-k, k);
# pass.filter (*cloud);
pass_th = cloud.make_passthrough_filter()
pass_th.set_filter_field_name("y")
pass_th.set_filter_limits(-k, k)
cloud = pass_th.filter()
# pass.setInputCloud (cloud);
# pass.setFilterFieldName ("x");
# // pass.setFilterLimits (-0.1, 0.1);
# pass.setFilterLimits (-j, j);
# pass.filter (*cloud);
# pass_th.setInputCloud(cloud)
pass_th.set_filter_field_name("x")
pass_th.set_filter_limits(-j, j)
cloud = pass_th.filter()
# pass.setInputCloud (cloud);
# pass.setFilterFieldName ("z");
# // pass.setFilterLimits (-10, 10);
# pass.setFilterLimits (-i, i);
# pass.filter (*cloud);
# pass_th.setInputCloud(cloud)
pass_th.set_filter_field_name("z")
pass_th.set_filter_limits(-10, 10)
cloud = pass_th.filter()
# // Visualizing pointcloud
# viewer.addPointCloud (cloud, "scene_cloud");
# viewer.spinOnce();
# viewer.removePointCloud("scene_cloud");
viewer.AddPointCloud(cloud, b'scene_cloud', 0)
viewer.SpinOnce()
# viewer.Spin()
viewer.RemovePointCloud(b'scene_cloud', 0)
if __name__ == "__main__":
# import cProfile
# cProfile.run('main()', sort='time')
main()