forked from hughplay/DFNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
267 lines (209 loc) · 7.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
from torch import nn
import torch.nn.functional as F
from utils import resize_like
def get_norm(name, out_channels):
if name == 'batch':
norm = nn.BatchNorm2d(out_channels)
elif name == 'instance':
norm = nn.InstanceNorm2d(out_channels)
else:
norm = None
return norm
def get_activation(name):
if name == 'relu':
activation = nn.ReLU()
elif name == 'elu':
activation == nn.ELU()
elif name == 'leaky_relu':
activation = nn.LeakyReLU(negative_slope=0.2)
elif name == 'tanh':
activation = nn.Tanh()
elif name == 'sigmoid':
activation = nn.Sigmoid()
else:
activation = None
return activation
class Conv2dSame(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding = self.conv_same_pad(kernel_size, stride)
if type(padding) is not tuple:
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size, stride, padding)
else:
self.conv = nn.Sequential(
nn.ConstantPad2d(padding*2, 0),
nn.Conv2d(in_channels, out_channels, kernel_size, stride, 0)
)
def conv_same_pad(self, ksize, stride):
if (ksize - stride) % 2 == 0:
return (ksize - stride) // 2
else:
left = (ksize - stride) // 2
right = left + 1
return left, right
def forward(self, x):
return self.conv(x)
class ConvTranspose2dSame(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding, output_padding = self.deconv_same_pad(kernel_size, stride)
self.trans_conv = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size, stride,
padding, output_padding)
def deconv_same_pad(self, ksize, stride):
pad = (ksize - stride + 1) // 2
outpad = 2 * pad + stride - ksize
return pad, outpad
def forward(self, x):
return self.trans_conv(x)
class UpBlock(nn.Module):
def __init__(self, mode='nearest', scale=2, channel=None, kernel_size=4):
super().__init__()
self.mode = mode
if mode == 'deconv':
self.up = ConvTranspose2dSame(
channel, channel, kernel_size, stride=scale)
else:
def upsample(x):
return F.interpolate(x, scale_factor=scale, mode=mode)
self.up = upsample
def forward(self, x):
return self.up(x)
class EncodeBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, stride,
normalization=None, activation=None):
super().__init__()
self.c_in = in_channels
self.c_out = out_channels
layers = []
layers.append(
Conv2dSame(self.c_in, self.c_out, kernel_size, stride))
if normalization:
layers.append(get_norm(normalization, self.c_out))
if activation:
layers.append(get_activation(activation))
self.encode = nn.Sequential(*layers)
def forward(self, x):
return self.encode(x)
class DecodeBlock(nn.Module):
def __init__(
self, c_from_up, c_from_down, c_out, mode='nearest',
kernel_size=4, scale=2, normalization='batch', activation='relu'):
super().__init__()
self.c_from_up = c_from_up
self.c_from_down = c_from_down
self.c_in = c_from_up + c_from_down
self.c_out = c_out
self.up = UpBlock(mode, scale, c_from_up, kernel_size=scale)
layers = []
layers.append(
Conv2dSame(self.c_in, self.c_out, kernel_size, stride=1))
if normalization:
layers.append(get_norm(normalization, self.c_out))
if activation:
layers.append(get_activation(activation))
self.decode = nn.Sequential(*layers)
def forward(self, x, concat=None):
out = self.up(x)
if self.c_from_down > 0:
out = torch.cat([out, concat], dim=1)
out = self.decode(out)
return out
class BlendBlock(nn.Module):
def __init__(
self, c_in, c_out, ksize_mid=3, norm='batch', act='leaky_relu'):
super().__init__()
c_mid = max(c_in // 2, 32)
self.blend = nn.Sequential(
Conv2dSame(c_in, c_mid, 1, 1),
get_norm(norm, c_mid),
get_activation(act),
Conv2dSame(c_mid, c_out, ksize_mid, 1),
get_norm(norm, c_out),
get_activation(act),
Conv2dSame(c_out, c_out, 1, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.blend(x)
class FusionBlock(nn.Module):
def __init__(self, c_feat, c_alpha=1):
super().__init__()
c_img = 3
self.map2img = nn.Sequential(
Conv2dSame(c_feat, c_img, 1, 1),
nn.Sigmoid())
self.blend = BlendBlock(c_img*2, c_alpha)
def forward(self, img_miss, feat_de):
img_miss = resize_like(img_miss, feat_de)
raw = self.map2img(feat_de)
alpha = self.blend(torch.cat([img_miss, raw], dim=1))
result = alpha * raw + (1 - alpha) * img_miss
return result, alpha, raw
class DFNet(nn.Module):
def __init__(
self, c_img=3, c_mask=1, c_alpha=3,
mode='nearest', norm='batch', act_en='relu', act_de='leaky_relu',
en_ksize=[7, 5, 5, 3, 3, 3, 3, 3], de_ksize=[3]*8,
blend_layers=[0, 1, 2, 3, 4, 5]):
super().__init__()
c_init = c_img + c_mask
self.n_en = len(en_ksize)
self.n_de = len(de_ksize)
assert self.n_en == self.n_de, (
'The number layer of Encoder and Decoder must be equal.')
assert self.n_en >= 1, (
'The number layer of Encoder and Decoder must be greater than 1.')
assert 0 in blend_layers, 'Layer 0 must be blended.'
self.en = []
c_in = c_init
self.en.append(
EncodeBlock(c_in, 64, en_ksize[0], 2, None, None))
for k_en in en_ksize[1:]:
c_in = self.en[-1].c_out
c_out = min(c_in*2, 512)
self.en.append(EncodeBlock(
c_in, c_out, k_en, stride=2,
normalization=norm, activation=act_en))
# register parameters
for i, en in enumerate(self.en):
self.__setattr__('en_{}'.format(i), en)
self.de = []
self.fuse = []
for i, k_de in enumerate(de_ksize):
c_from_up = self.en[-1].c_out if i == 0 else self.de[-1].c_out
c_out = c_from_down = self.en[-i-1].c_in
layer_idx = self.n_de - i - 1
self.de.append(DecodeBlock(
c_from_up, c_from_down, c_out, mode, k_de, scale=2,
normalization=norm, activation=act_de))
if layer_idx in blend_layers:
self.fuse.append(FusionBlock(c_out, c_alpha))
else:
self.fuse.append(None)
# register parameters
for i, de in enumerate(self.de[::-1]):
self.__setattr__('de_{}'.format(i), de)
for i, fuse in enumerate(self.fuse[::-1]):
if fuse:
self.__setattr__('fuse_{}'.format(i), fuse)
def forward(self, img_miss, mask):
out = torch.cat([img_miss, mask], dim=1)
out_en = [out]
for encode in self.en:
out = encode(out)
out_en.append(out)
results = []
alphas = []
raws = []
for i, (decode, fuse) in enumerate(zip(self.de, self.fuse)):
out = decode(out, out_en[-i-2])
if fuse:
result, alpha, raw = fuse(img_miss, out)
results.append(result)
alphas.append(alpha)
raws.append(raw)
return results[::-1], alphas[::-1], raws[::-1]