-
Notifications
You must be signed in to change notification settings - Fork 0
/
generic.py
826 lines (675 loc) · 29.4 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
import torch
import random
import uuid
import argparse
import copy
import os
import re
import yaml
import time
import string
import numpy as np
from collections import Counter
from os.path import join as pjoin
from functools import lru_cache
import textworld
from textworld.logic import State, Rule, Proposition, Variable
missing_words = set()
def to_np(x):
if isinstance(x, np.ndarray):
return x
return x.data.cpu().numpy()
def to_pt(np_matrix, enable_cuda=False, type='long'):
if type == 'long':
if enable_cuda:
return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.LongTensor).cuda())
else:
return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.LongTensor))
elif type == 'float':
if enable_cuda:
return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.FloatTensor).cuda())
else:
return torch.autograd.Variable(torch.from_numpy(np_matrix).type(torch.FloatTensor))
def _words_to_ids(words, word2id):
ids = []
for word in words:
ids.append(_word_to_id(word, word2id))
return ids
def _word_to_id(word, word2id):
try:
return word2id[word]
except KeyError:
key = word + "_" + str(len(word2id))
if key not in missing_words:
print("Warning... %s is not in vocab, vocab size is %d..." % (word, len(word2id)))
missing_words.add(key)
with open("missing_words.txt", 'a+') as outfile:
outfile.write(key + '\n')
outfile.flush()
return 1
def max_len(list_of_list):
if len(list_of_list) == 0:
return 0
return max(map(len, list_of_list))
def max_tensor_len(list_of_tensor, dim):
tmp = []
for t in list_of_tensor:
tmp.append(t.size(dim))
return max(tmp)
def pad_sequences(sequences, maxlen=None, dtype='int32', value=0.):
'''
Partially borrowed from Keras
# Arguments
sequences: list of lists where each element is a sequence
maxlen: int, maximum length
dtype: type to cast the resulting sequence.
value: float, value to pad the sequences to the desired value.
# Returns
x: numpy array with dimensions (number_of_sequences, maxlen)
'''
if isinstance(sequences, np.ndarray):
return sequences
lengths = [len(s) for s in sequences]
nb_samples = len(sequences)
if maxlen is None:
maxlen = np.max(lengths)
# take the sample shape from the first non empty sequence
# checking for consistency in the main loop below.
sample_shape = tuple()
for s in sequences:
if len(s) > 0:
sample_shape = np.asarray(s).shape[1:]
break
x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)
for idx, s in enumerate(sequences):
if len(s) == 0:
continue # empty list was found
# pre truncating
trunc = s[-maxlen:]
# check `trunc` has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %
(trunc.shape[1:], idx, sample_shape))
# post padding
x[idx, :len(trunc)] = trunc
return x
def normalize_string(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_special_tokens(text):
return re.sub(r'(<bos>|<eos>|<sep>|<pad>|<unk>)', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def lower(text):
return text.lower()
return white_space_fix(remove_special_tokens(lower(s)))
def f1_score(prediction, ground_truth):
if prediction == ground_truth:
return 1.0
prediction_tokens = normalize_string(prediction).split()
ground_truth_tokens = normalize_string(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def precision_recall_f1_score(prediction, ground_truth):
if prediction == ground_truth:
return 1.0, 1.0, 1.0
prediction_tokens = normalize_string(prediction).split()
ground_truth_tokens = normalize_string(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0., 0., 0.
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return precision, recall, f1
def f1_score_over_ground_truths(prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = f1_score(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def ez_gather_dim_1(input, index):
if len(input.size()) == len(index.size()):
return input.gather(1, index)
res = []
for i in range(input.size(0)):
res.append(input[i][index[i][0]])
return torch.stack(res, 0)
def list_of_token_list_to_char_input(list_of_token_list, char2id):
batch_size = len(list_of_token_list)
max_token_number = max_len(list_of_token_list)
max_char_number = max([max_len(item) for item in list_of_token_list])
if max_char_number < 6:
max_char_number = 6
res = np.zeros((batch_size, max_token_number, max_char_number), dtype='int32')
for i in range(batch_size):
for j in range(len(list_of_token_list[i])):
for k in range(len(list_of_token_list[i][j])):
res[i][j][k] = _word_to_id(list_of_token_list[i][j][k], char2id)
return res
def list_of_word_id_list_to_char_input(list_of_word_id_list, id2word, char2id):
res = []
for i in range(len(list_of_word_id_list)):
res.append([id2word[item] for item in list_of_word_id_list[i]])
return list_of_token_list_to_char_input(res, char2id)
def get_match_result_obs_gen(prediction_string, groundtruth_string):
pred_string = prediction_string.split("<eos>")[0].rstrip()
gt_string = groundtruth_string.split("<eos>")[0].rstrip()
return precision_recall_f1_score(pred_string, gt_string)
def get_match_result(prediction_string, groundtruth_string, type='exact'):
predict_cmds = prediction_string.split("<sep>")
if predict_cmds[-1].endswith("<eos>"):
predict_cmds[-1] = predict_cmds[-1][:-5].strip()
else:
predict_cmds = predict_cmds[:-1]
groundtruth_cmds = groundtruth_string.split("<sep>")
predict_cmds = [" ".join(item.split()) for item in predict_cmds]
groundtruth_cmds = [" ".join(item.split()) for item in groundtruth_cmds]
predict_cmds = [item for item in predict_cmds if len(item) > 0]
groundtruth_cmds = [item for item in groundtruth_cmds if len(item) > 0]
if len(predict_cmds) == 0 and len(groundtruth_cmds) == 0:
return 1.0, 1.0, 1.0
elif len(predict_cmds) == 0 or len(groundtruth_cmds) == 0:
return 0.0, 0.0, 0.0
predict_cmds = list(set(predict_cmds))
groundtruth_cmds = list(set(groundtruth_cmds))
match_score = np.asarray([0.0] * len(predict_cmds), dtype='float32')
for pred_id, pred in enumerate(predict_cmds):
if type == 'exact':
if pred in groundtruth_cmds:
match_score[pred_id] = 1
elif type == 'soft':
match_score[pred_id] = f1_score_over_ground_truths(pred, groundtruth_cmds)
precision = float(sum(match_score)) / float(len(predict_cmds)) if len(predict_cmds) > 0 else 0.0
recall = float(sum(match_score)) / float(len(groundtruth_cmds)) if len(groundtruth_cmds) > 0 else 0.0
if precision + recall > 0:
f1 = float(2 * (precision * recall)) / (precision + recall)
else:
f1 = 0.0
return precision, recall, f1
def power(a, b):
if a == 0 or b == 0.0:
return 1.0
elif b > 0.0:
return a ** b
else:
return 1.0 / (a ** -b)
def exists_triplet(triplets, arg1, arg2, relation):
for i, t in enumerate(triplets):
if arg1 in [t[0], "*"] and\
arg2 in [t[1], "*"] and\
relation in [t[2], "*"]:
return i
return None
def update_graph_triplets(triplets, commands, node_vocab, relation_vocab):
# remove duplicate but remain the order
tmp_commands = []
for cmd in commands:
if cmd not in tmp_commands:
tmp_commands.append(cmd)
commands = tmp_commands
for cmd in commands:
# get verb-arg1-arg2
if not (cmd.startswith("add") or cmd.startswith("delete")):
continue
cmd = cmd.split()
if len(cmd) <= 3:
continue
verb = cmd[0]
relation = cmd[-1]
if relation not in relation_vocab:
continue
nouns = " ".join(cmd[1:-1])
arg1, arg2 = "", ""
for n in node_vocab:
if nouns.startswith(n):
tmp = nouns[len(n):].strip()
if tmp == n:
continue
if tmp in node_vocab:
arg1 = n
arg2 = tmp
break
if arg1 == "" or arg2 == "":
continue
# manipulate KG
index = exists_triplet(triplets, arg1, arg2, relation)
if verb == "add":
if index is not None:
continue
triplets.append([arg1, arg2, relation])
else:
if index is None:
continue
triplets = triplets[:index] + triplets[index + 1:]
return triplets
def preproc(s, tokenizer=None):
if s is None:
return "nothing"
s = s.replace("\n", ' ')
if "$$$$$$$" in s:
s = s.split("$$$$$$$")[-1]
while(True):
if " " in s:
s = s.replace(" ", " ")
else:
break
s = s.strip()
if len(s) == 0:
return "nothing"
s = " ".join([t.text for t in tokenizer(s)])
s = s.lower()
return s
##############################
# KG stuff
##############################
# relations
two_args_relations = ["in", "on", "at", "west_of", "east_of", "north_of", "south_of", "part_of", "needs"]
one_arg_state_relations = ["chopped", "roasted", "diced", "burned", "open", "fried", "grilled", "consumed", "closed", "sliced", "uncut", "raw"]
ignore_relations = ["cuttable", "edible", "drinkable", "sharp", "inedible", "cut", "cooked", "cookable", "needs_cooking"]
opposite_relations = {"west_of": "east_of",
"east_of": "west_of",
"south_of": "north_of",
"north_of": "south_of"}
equivalent_entities = {"inventory": "player",
"recipe": "cookbook"}
FOOD_FACTS = ["sliced", "diced", "chopped", "cut", "uncut", "cooked", "burned",
"grilled", "fried", "roasted", "raw", "edible", "inedible"]
def process_equivalent_entities_in_triplet(triplet):
# ["cookbook", "inventory", "in"]
for i in range(len(triplet)):
if triplet[i] in equivalent_entities:
triplet[i] = equivalent_entities[triplet[i]]
return triplet
def process_equivalent_entities_in_command(command):
# "add , knife , inventory , in"
words = command.split(" , ")
words = [item.strip() for item in words]
for i in range(len(words)):
if words[i] in equivalent_entities:
words[i] = equivalent_entities[words[i]]
return " , ".join(words)
def process_exits_in_triplet(triplet):
# ["exit", "kitchen", "backyard", "south_of"]
if triplet[0] == "exit":
return [triplet[0], triplet[1], triplet[3]]
else:
return triplet
def process_burning_triplets(list_of_triplets):
burned_stuff = []
for t in list_of_triplets:
if "burned" in t:
burned_stuff.append(t[0])
res = []
for t in list_of_triplets:
if t[0] in burned_stuff and t[1] in ["grilled", "fried", "roasted"]:
continue
res.append(t)
return res
def process_burning_commands(list_of_commands, list_of_triplets):
cook = set(["grilled", "fried", "roasted"])
burned_stuff = []
for c in list_of_commands:
if "burned" in c:
burned_stuff.append(c.split(",")[1].strip())
res = []
for bs in burned_stuff:
for t in list_of_triplets:
if bs not in t:
continue
intersection = set(t) & cook
if len(intersection) == 0:
continue
res.append("delete , " + bs + " , " + list(intersection)[0] + " , is")
break
return list_of_commands + res
def process_direction_triplets(list_of_triplets):
res = []
for t in list_of_triplets:
res.append(t)
if t[0] == "exit" or t[1] == "exit":
continue
if "north_of" in t:
res.append([t[1], t[0], "south_of"])
elif "south_of" in t:
res.append([t[1], t[0], "north_of"])
elif "east_of" in t:
res.append([t[1], t[0], "west_of"])
elif "west_of" in t:
res.append([t[1], t[0], "east_of"])
return res
def process_direction_commands(list_of_commands):
res = list(set(list_of_commands))
return res
def arguments_swap(cmd, previous_action=None):
if previous_action is None:
return cmd
previous_action = previous_action.lower()
items = cmd.split(" , ")
if items[-1] == "west_of" and previous_action == "go east":
tmp = items[1]
items[1] = items[2]
items[2] = tmp
items[-1] = "east_of"
elif items[-1] == "north_of" and previous_action == "go south":
tmp = items[1]
items[1] = items[2]
items[2] = tmp
items[-1] = "south_of"
return " , ".join(items)
def sort_target_commands(list_of_cmds):
list_of_cmds = [item.split(" , ") for item in list_of_cmds]
list_of_cmds.sort(key=lambda i: (i[0] == "add", # add always before delete
i[1] == "player", # relations with player always first
i[2] == "player", # relations with player always first
i[3] in ["west_of", "east_of", "north_of", "south_of"], # room connections always first
i[3] in ["part_of"], # recipe
i[3] in two_args_relations, # two args relations first
i[3] in ["is"], # one arg state relations first
i[3] in ["needs"], # one arg requirement relations first
i[2],
i[1]))
list_of_cmds = [" ".join(item) for item in list_of_cmds]
list_of_cmds = list_of_cmds[::-1]
res = []
for cmd in list_of_cmds:
if cmd not in res:
res.append(cmd)
return res
@lru_cache()
def _rules_predicates_scope():
rules = [
Rule.parse("query :: at(P, r) -> at(P, r)"),
Rule.parse("query :: at(P, r) & at(o, r) -> at(o, r)"),
Rule.parse("query :: at(P, r) & at(d, r) -> at(d, r)"),
Rule.parse("query :: at(P, r) & at(s, r) -> at(s, r)"),
Rule.parse("query :: at(P, r) & at(c, r) -> at(c, r)"),
Rule.parse("query :: at(P, r) & at(s, r) & on(o, s) -> on(o, s)"),
Rule.parse("query :: at(P, r) & at(c, r) & open(c) -> open(c)"),
Rule.parse("query :: at(P, r) & at(c, r) & closed(c) -> closed(c)"),
Rule.parse("query :: at(P, r) & at(c, r) & open(c) & in(o, c) -> in(o, c)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & open(d) -> open(d)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & closed(d) -> closed(d)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & north_of(r', r) -> north_of(d, r)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & south_of(r', r) -> south_of(d, r)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & west_of(r', r) -> west_of(d, r)"),
Rule.parse("query :: at(P, r) & link(r, d, r') & east_of(r', r) -> east_of(d, r)"),
]
rules += [Rule.parse("query :: at(P, r) & at(f, r) & {fact}(f) -> {fact}(f)".format(fact=fact)) for fact in FOOD_FACTS]
rules += [Rule.parse("query :: at(P, r) & at(s, r) & on(f, s) & {fact}(f) -> {fact}(f)".format(fact=fact)) for fact in FOOD_FACTS]
rules += [Rule.parse("query :: at(P, r) & at(c, r) & open(c) & in(f, c) & {fact}(f) -> {fact}(f)".format(fact=fact)) for fact in FOOD_FACTS]
return rules
@lru_cache()
def _rules_predicates_recipe():
rules = [
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) -> part_of(f, RECIPE)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & roasted(ingredient) -> needs_roasted(f)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & grilled(ingredient) -> needs_grilled(f)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & fried(ingredient) -> needs_fried(f)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & sliced(ingredient) -> needs_sliced(f)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & chopped(ingredient) -> needs_chopped(f)"),
Rule.parse("query :: in(ingredient, RECIPE) & base(f, ingredient) & diced(ingredient) -> needs_diced(f)"),
]
return rules
@lru_cache()
def _rules_exits():
rules = [
Rule.parse("query :: at(P, r) & north_of(r', r) -> north_of(r', r)"),
Rule.parse("query :: at(P, r) & west_of(r', r) -> west_of(r', r)"),
Rule.parse("query :: at(P, r) & south_of(r', r) -> south_of(r', r)"),
Rule.parse("query :: at(P, r) & east_of(r', r) -> east_of(r', r)"),
]
return rules
@lru_cache()
def _rules_predicates_inv():
rules = [
Rule.parse("query :: in(o, I) -> in(o, I)"),
]
rules += [Rule.parse("query :: in(f, I) & {fact}(f) -> {fact}(f)".format(fact=fact)) for fact in FOOD_FACTS]
return rules
@lru_cache()
def _rules_to_convert_link_predicates():
rules = [
Rule.parse("query :: link(r, d, r') & north_of(r', r) -> north_of(d, r)"),
Rule.parse("query :: link(r, d, r') & south_of(r', r) -> south_of(d, r)"),
Rule.parse("query :: link(r, d, r') & west_of(r', r) -> west_of(d, r)"),
Rule.parse("query :: link(r, d, r') & east_of(r', r) -> east_of(d, r)"),
]
return rules
def find_predicates_in_scope(state):
actions = state.all_applicable_actions(_rules_predicates_scope())
return [action.postconditions[0] for action in actions]
def find_exits_in_scope(state):
actions = state.all_applicable_actions(_rules_exits())
def _convert_to_exit_fact(proposition):
return Proposition(proposition.name,
[Variable("exit", "LOCATION"),
proposition.arguments[1],
proposition.arguments[0]])
return [_convert_to_exit_fact(action.postconditions[0]) for action in actions]
def convert_link_predicates(state):
actions = state.all_applicable_actions(_rules_to_convert_link_predicates())
for action in list(actions):
state.apply(action)
return state
def find_predicates_in_inventory(state):
actions = state.all_applicable_actions(_rules_predicates_inv())
return [action.postconditions[0] for action in actions]
def find_predicates_in_recipe(state):
actions = state.all_applicable_actions(_rules_predicates_recipe())
def _convert_to_needs_relation(proposition):
if not proposition.name.startswith("needs_"):
return proposition
return Proposition("needs",
[proposition.arguments[0],
Variable(proposition.name.split("needs_")[-1], "STATE")])
return [_convert_to_needs_relation(action.postconditions[0]) for action in actions]
def process_facts(prev_facts, info_game, info_facts, info_last_action, cmd):
kb = info_game.kb
if prev_facts is None or cmd == "restart":
facts = set()
else:
if cmd == "inventory": # Bypassing TextWorld's action detection.
facts = set(find_predicates_in_inventory(State(kb.logic, info_facts)))
return prev_facts | facts
elif info_last_action is None :
return prev_facts # Invalid action, nothing has changed.
elif info_last_action.name == "examine" and "cookbook" in [v.name for v in info_last_action.variables]:
facts = set(find_predicates_in_recipe(State(kb.logic, info_facts)))
return prev_facts | facts
state = State(kb.logic, prev_facts | set(info_last_action.preconditions))
success = state.apply(info_last_action)
assert success
facts = set(state.facts)
# Always add facts in sight.
facts |= set(find_predicates_in_scope(State(kb.logic, info_facts)))
facts |= set(find_exits_in_scope(State(kb.logic, info_facts)))
return facts
def process_fully_obs_facts(info_game, facts):
state = State(info_game.kb.logic, facts)
state = convert_link_predicates(state)
inventory_facts = set(find_predicates_in_inventory(state))
recipe_facts = set(find_predicates_in_recipe(state))
return set(state.facts) | inventory_facts | recipe_facts
def process_local_obs_facts(info_game, info_facts, info_last_action, cmd):
def _get_state():
return State(info_game.kb.logic, info_facts)
if cmd == "inventory": # Bypassing TextWorld's action detection.
return set(find_predicates_in_inventory(_get_state()))
elif (info_last_action and info_last_action.name.startswith("go")) or cmd in ["restart", "look"]:
# Facts in sight.
state = _get_state()
facts = set(find_predicates_in_scope(state))
facts |= set(find_exits_in_scope(state))
return facts
elif info_last_action is None:
return set() # Invalid action, no facts.
elif info_last_action.name == "examine" and "cookbook" in [v.name for v in info_last_action.variables]:
return set(find_predicates_in_recipe(_get_state()))
return info_last_action.postconditions
def serialize_facts(facts):
PREDICATES_TO_DISCARD = {"ingredient_1", "ingredient_2", "ingredient_3", "ingredient_4", "ingredient_5",
"out", "free", "used", "cooking_location", "link"}
CONSTANT_NAMES = {"P": "player", "I": "player", "ingredient": None, "slot": None, "RECIPE": "cookbook"}
# e.g. [("wooden door", "backyard", "in"), ...]
serialized = [[arg.name if arg.name and arg.type not in CONSTANT_NAMES else CONSTANT_NAMES[arg.type] for arg in fact.arguments] + [fact.name]
for fact in sorted(facts) if fact.name not in PREDICATES_TO_DISCARD]
return filter_triplets([fact for fact in serialized if None not in fact])
def filter_triplets(triplets):
tp = []
for item in triplets:
# item = process_equivalent_entities_in_triplet(item)
item = process_exits_in_triplet(item)
if item[-1] in (two_args_relations + one_arg_state_relations):
tp.append([it.lower() for it in item])
else:
if item[-1] not in ignore_relations:
print("Warning..., %s not in known relations..." % (item[-1]))
for i in range(len(tp)):
if tp[i][-1] in one_arg_state_relations:
tp[i].append("is")
tp = process_burning_triplets(tp)
# tp = process_direction_triplets(tp)
return tp
def gen_graph_commands(facts, cmd):
# e.g ["add , player , shed , in", ...]
return [" , ".join([cmd] + fact) for fact in serialize_facts(facts)]
class HistoryScoreCache:
def __init__(self, capacity=1):
self.capacity = capacity
self.reset()
def push(self, stuff):
"""stuff is float."""
if len(self.memory) < self.capacity:
self.memory.append(stuff)
else:
self.memory = self.memory[1:] + [stuff]
def get_avg(self):
return np.mean(np.array(self.memory))
def reset(self):
self.memory = []
def __len__(self):
return len(self.memory)
def graph_triplets_to_string(list_of_triples):
list_of_triples = ["|".join(item) for item in list_of_triples]
list_of_triples.sort()
key = "<|>".join(list_of_triples)
return key
class EpisodicCountingMemory:
def __init__(self):
self.reset()
def push(self, stuff):
"""stuff is list of list of list of strings.
e.g.: [[['player', 'shed', 'at'], ['workbench', 'shed', 'at']]]
"""
assert len(stuff) > 0 # batch size should be greater than 0
if len(self.memory) == 0:
for _ in range(len(stuff)):
self.memory.append(set())
for b in range(len(stuff)):
key = graph_triplets_to_string(stuff[b])
self.memory[b].add(key)
def has_not_seen(self, stuff):
assert len(stuff) > 0 # batch size should be greater than 0
res = []
for b in range(len(stuff)):
key = graph_triplets_to_string(stuff[b])
res.append(key not in self.memory[b])
return res
def reset(self):
self.memory = []
def __len__(self):
return len(self.memory)
def two_lists_of_lists_are_identical(list_1, list_2):
return list_1 == list_2
def generate_labels_for_sp(target_graph, graph_candidates, k_way_classification=5):
if k_way_classification == -1:
new_graph_candidates = copy.deepcopy(graph_candidates)
for b in range(len(new_graph_candidates)):
random.shuffle(new_graph_candidates[b])
return [[(two_lists_of_lists_are_identical(z, x)) * 1 for z in y] for (x, y) in zip(target_graph, new_graph_candidates)], new_graph_candidates
batch_size = len(graph_candidates)
negative_samples = []
for b in range(batch_size):
tmp = [item for item in graph_candidates[b] if not two_lists_of_lists_are_identical(item, target_graph[b])]
ns_indices = np.random.choice(len(tmp), k_way_classification - 1, replace=True).tolist()
ns = []
for idx in ns_indices:
ns.append(tmp[idx])
negative_samples.append(ns)
indices = np.random.randint(low=0, high=k_way_classification, size=batch_size).tolist()
labels = np.zeros((batch_size, k_way_classification), dtype="int32")
new_graph_candidates = []
for b, which in enumerate(indices):
labels[b][which] = 1
tmp = negative_samples[b][:which] + [target_graph[b]] + negative_samples[b][which:]
new_graph_candidates.append(tmp)
return labels, new_graph_candidates
def generate_labels_for_ap(action_list, action_candidate_list, k_way_classification=5):
if k_way_classification == -1:
new_action_candidates = copy.deepcopy(action_candidate_list)
for b in range(len(new_action_candidates)):
random.shuffle(new_action_candidates[b])
return [[(z == x) * 1 for z in y] for (x, y) in zip(action_list, new_action_candidates)], new_action_candidates
batch_size = len(action_candidate_list)
negative_samples = []
for b in range(batch_size):
ns = [item for item in action_candidate_list[b] if item != action_list[b]]
ns = np.random.choice(ns, k_way_classification - 1, replace=True).tolist()
negative_samples.append(ns)
indices = np.random.randint(low=0, high=k_way_classification, size=batch_size).tolist()
labels = np.zeros((batch_size, k_way_classification), dtype="int32")
new_action_candidates = []
for b, which in enumerate(indices):
labels[b][which] = 1
tmp = negative_samples[b][:which] + [action_list[b]] + negative_samples[b][which:]
new_action_candidates.append(tmp)
return labels, new_action_candidates
class LinearSchedule(object):
"""
Linear interpolation between initial_p and final_p over
schedule_timesteps. After this many timesteps pass final_p is
returned.
:param schedule_timesteps: (int) Number of timesteps for which to linearly anneal initial_p to final_p
:param initial_p: (float) initial output value
:param final_p: (float) final output value
"""
def __init__(self, schedule_timesteps, final_p, initial_p=1.0):
self.schedule_timesteps = schedule_timesteps
self.final_p = final_p
self.initial_p = initial_p
self.schedule = np.linspace(initial_p, final_p, schedule_timesteps)
def value(self, step):
if step < 0:
return self.initial_p
if step >= self.schedule_timesteps:
return self.final_p
else:
return self.schedule[step]
def load_config():
parser = argparse.ArgumentParser()
parser.add_argument("config_file", help="path to config file")
parser.add_argument("-p", "--params", nargs="+", metavar="my.setting=value", default=[],
help="override params of the config file,"
" e.g. -p 'training.gamma=0.95'")
args = parser.parse_args()
assert os.path.exists(args.config_file), "Invalid config file"
with open(args.config_file) as reader:
config = yaml.safe_load(reader)
# Parse overriden params.
for param in args.params:
fqn_key, value = param.split("=")
entry_to_change = config
keys = fqn_key.split(".")
for k in keys[:-1]:
entry_to_change = entry_to_change[k]
entry_to_change[keys[-1]] = yaml.load(value)
# print(config)
return config