-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrepresentations.py
387 lines (354 loc) · 17.6 KB
/
representations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Different graphs
# graph_state: full new kg
# graph_state_1_connectivity: room connectivity (history included)
# graph_state_2_roomitem: what's in current room
# graph_state_3_youritem: your inventory
# graph_state_4_otherroom: remove you related nodes (history included)
# graph_state_5_mask (not used): intersection of kg1, kg2 and kg3
import networkx as nx
import numpy as np
import openie
from fuzzywuzzy import fuzz
from jericho.util import clean
class StateAction(object):
def __init__(self, spm, vocab, vocab_rev, tsv_file, max_word_len):
self.graph_state = nx.DiGraph()
self.max_word_len = max_word_len
self.graph_state_rep = []
self.visible_state = ""
self.drqa_input = ""
self.vis_pruned_actions = []
self.pruned_actions_rep = []
self.sp = spm
self.vocab_act = vocab
self.vocab_act_rev = vocab_rev
self.vocab_kge = self.load_vocab_kge(tsv_file)
self.adj_matrix = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
self.room = ""
self.graph_state_1_connectivity = nx.DiGraph() # Need to track room connectivity
self.graph_state_2_roomitem = None
self.graph_state_3_youritem = None
self.graph_state_4_otherroom = None
self.graph_state_5_mask = None
self.graph_state_rep_1_connectivity = []
self.graph_state_rep_2_roomitem = []
self.graph_state_rep_3_youritem = []
self.graph_state_rep_4_otherroom = []
self.graph_state_rep_5_mask = []
self.adj_matrix_1_connectivity = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
self.adj_matrix_2_roomitem = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
self.adj_matrix_3_youritem = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
self.adj_matrix_4_otherroom = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
self.adj_matrix_5_mask = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
def visualize(self, graph_to_vis=None):
assert(graph_to_vis is not None), "visualize(): the graph should not be None!"
pos = nx.spring_layout(graph_to_vis)
edge_labels = {e: graph_to_vis.edges[e]['rel'] for e in graph_to_vis.edges}
print(edge_labels)
nx.draw_networkx_edge_labels(graph_to_vis, pos, edge_labels)
nx.draw(graph_to_vis, pos=pos, with_labels=True, node_size=200, font_size=10)
def load_vocab_kge(self, tsv_file):
ent = {}
with open(tsv_file, 'r') as f:
for line in f:
e, eid = line.split('\t')
ent[e.strip()] = int(eid.strip())
rel = {}
with open(tsv_file, 'r') as f:
for line in f:
r, rid = line.split('\t')
rel[r.strip()] = int(rid.strip())
return {'entity': ent, 'relation': rel}
def update_state(self, visible_state, inventory_state, objs, prev_action=None, cache=None):
# Step 1: Build a copy of past KG (full)
graph_copy = self.graph_state.copy()
prev_room = self.room
prev_room_subgraph = None
con_cs = [graph_copy.subgraph(c) for c in nx.weakly_connected_components(graph_copy)]
for con_c in con_cs:
for node in con_c.nodes:
node = set(str(node).split())
if set(prev_room.split()).issubset(node):
prev_room_subgraph = nx.induced_subgraph(graph_copy, con_c.nodes)
# Step 2: Bemove old ones with "you" --> past KG without "you"
for edge in self.graph_state.edges:
if 'you' in edge[0]:
graph_copy.remove_edge(*edge)
self.graph_state = graph_copy
# Keep room connectivity only, remove "you"
# <you, in, room>, <room, connect, room> --> <room, connect, room>
graph_copy_1_connectivity = self.graph_state_1_connectivity.copy()
for edge in self.graph_state_1_connectivity.edges:
if 'you' in edge[0]:
graph_copy_1_connectivity.remove_edge(*edge)
self.graph_state_1_connectivity = graph_copy_1_connectivity
# Step 3: Reinitialize sub-KG
self.graph_state_2_roomitem = nx.DiGraph() # re-init
self.graph_state_3_youritem = nx.DiGraph() # re-init
self.graph_state_4_otherroom = graph_copy.copy() # Just past information
# Preprocess visible state --> get sents
visible_state = visible_state.split('\n')
room = visible_state[0]
visible_state = clean(' '.join(visible_state[1:]))
self.visible_state = str(visible_state)
if cache is None:
sents = openie.call_stanford_openie(self.visible_state)['sentences']
else:
sents = cache
if sents == "":
return []
dirs = ['north', 'south', 'east', 'west', 'southeast', 'southwest', 'northeast', 'northwest', 'up', 'down']
in_aliases = ['are in', 'are facing', 'are standing', 'are behind', 'are above', 'are below', 'are in front']
# Update graph, "rules" are new triples to be added
# Add two rule lists for "you" and "woyou"
rules_1_connectivity = [] # <you,in>, <room,connect>
rules_2_roomitem = [] # <you,in>, <room,have>
rules_3_youritem = [] # <you,have>
rules = []
in_rl = []
in_flag = False
for i, ov in enumerate(sents):
sent = ' '.join([a['word'] for a in ov['tokens']])
triple = ov['openie']
# 1.1 -> check directions
# direction rules: <room, has, exit to direction>
for d in dirs:
if d in sent and i != 0:
rules.append((room, 'has', 'exit to ' + d))
rules_1_connectivity.append((room, 'has', 'exit to ' + d))
# 1.2 -> check OpenIE triples
for tr in triple:
h, r, t = tr['subject'].lower(), tr['relation'].lower(), tr['object'].lower()
# case 1: "you", "in"
if h == 'you':
for rp in in_aliases:
if fuzz.token_set_ratio(r, rp) > 80:
r = "in"
in_rl.append((h, r, t)) # <you, in, >
in_flag = True
break
# case 2: should not be "it"
if h == 'it':
break
# case 3: other triples
if not in_flag:
rules.append((h, r, t))
rules_2_roomitem.append((h, r, t))
# 1.3 "you are in" cases
if in_flag:
cur_t = in_rl[0]
for h, r, t in in_rl:
if set(cur_t[2].split()).issubset(set(t.split())):
cur_t = h, r, t
rules.append(cur_t)
rules_1_connectivity.append(cur_t)
rules_2_roomitem.append(cur_t)
room = cur_t[2]
self.room=room
# 1.4 inventory: <you, have, ...>
try:
items = inventory_state.split(':')[1].split('\n')[1:]
for item in items:
rules.append(('you', 'have', str(' ' .join(item.split()[1:]))))
rules_3_youritem.append(('you', 'have', str(' ' .join(item.split()[1:])))) # [20200420] 3
except:
pass
# 1.5 room connectivity: <room, dir, room>
if prev_action is not None:
for d in dirs:
if d in prev_action and self.room != "":
rules.append((prev_room, d + ' of', room))
rules_1_connectivity.append((prev_room, d + ' of', room))
if prev_room_subgraph is not None:
for ed in prev_room_subgraph.edges:
rules.append((ed[0], "prev_graph_relations", ed[1]))
break
# 1.6 room item: <item,in,room>
# If the action is "drop" --> something will be in this room
# Therefore binary exploration bonus should not be used!
for o in objs:
rules.append((str(o), 'in', room))
rules_2_roomitem.append((str(o), 'in', room))
# add edges: if this edge already exists, adding will not show difference
add_rules = rules
for rule in add_rules:
u = '_'.join(str(rule[0]).split())
v = '_'.join(str(rule[2]).split())
if u in self.vocab_kge['entity'].keys() and v in self.vocab_kge['entity'].keys():
if u != 'it' and v != 'it':
self.graph_state.add_edge(rule[0], rule[2], rel=rule[1])
# build graph_state_1_connectivity
for rule in rules_1_connectivity:
u = '_'.join(str(rule[0]).split())
v = '_'.join(str(rule[2]).split())
if u in self.vocab_kge['entity'].keys() and v in self.vocab_kge['entity'].keys():
if u != 'it' and v != 'it':
self.graph_state_1_connectivity.add_edge(rule[0], rule[2], rel=rule[1])
# build graph_state_5_mask
self.graph_state_5_mask = self.graph_state_1_connectivity.copy()
# build graph_state_2_roomitem (and graph_state_5_mask)
for rule in rules_2_roomitem:
u = '_'.join(str(rule[0]).split())
v = '_'.join(str(rule[2]).split())
if u in self.vocab_kge['entity'].keys() and v in self.vocab_kge['entity'].keys():
if u != 'it' and v != 'it':
self.graph_state_2_roomitem.add_edge(rule[0], rule[2], rel=rule[1])
self.graph_state_5_mask.add_edge(rule[0], rule[2], rel=rule[1])
# build graph_state_3_youritem (and graph_state_5_mask)
for rule in rules_3_youritem:
u = '_'.join(str(rule[0]).split())
v = '_'.join(str(rule[2]).split())
if u in self.vocab_kge['entity'].keys() and v in self.vocab_kge['entity'].keys():
if u != 'it' and v != 'it':
self.graph_state_3_youritem.add_edge(rule[0], rule[2], rel=rule[1])
self.graph_state_5_mask.add_edge(rule[0], rule[2], rel=rule[1])
return add_rules, sents
def get_state_rep_kge(self):
ret = []
self.adj_matrix = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_state_rep_kge_1(self):
ret = []
self.adj_matrix_1_connectivity = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state_1_connectivity.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix_1_connectivity[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_state_rep_kge_2(self):
ret = []
self.adj_matrix_2_roomitem = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state_2_roomitem.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix_2_roomitem[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_state_rep_kge_3(self):
ret = []
self.adj_matrix_3_youritem = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state_3_youritem.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix_3_youritem[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_state_rep_kge_4(self):
ret = []
self.adj_matrix_4_otherroom = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state_4_otherroom.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix_4_otherroom[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_state_rep_kge_5(self):
ret = []
self.adj_matrix_5_mask = np.zeros((len(self.vocab_kge['entity']), len(self.vocab_kge['entity'])))
for u, v in self.graph_state_5_mask.edges:
u = '_'.join(str(u).split())
v = '_'.join(str(v).split())
if u not in self.vocab_kge['entity'].keys() or v not in self.vocab_kge['entity'].keys():
break
u_idx = self.vocab_kge['entity'][u]
v_idx = self.vocab_kge['entity'][v]
self.adj_matrix_5_mask[u_idx][v_idx] = 1
ret.append(self.vocab_kge['entity'][u])
ret.append(self.vocab_kge['entity'][v])
return list(set(ret))
def get_obs_rep(self, *args):
ret = [self.get_visible_state_rep_drqa(ob) for ob in args]
return pad_sequences(ret, maxlen=300)
def get_visible_state_rep_drqa(self, state_description):
remove = ['=', '-', '\'', ':', '[', ']', 'eos', 'EOS', 'SOS', 'UNK', 'unk', 'sos', '<', '>']
for rm in remove:
state_description = state_description.replace(rm, '')
return self.sp.encode_as_ids(state_description)
def get_action_rep_drqa(self, action):
action_desc_num = 20 * [0]
action = str(action)
for i, token in enumerate(action.split()[:20]):
short_tok = token[:self.max_word_len]
action_desc_num[i] = self.vocab_act_rev[short_tok] if short_tok in self.vocab_act_rev else 0
return action_desc_num
def step(self, visible_state, inventory_state, objs, prev_action=None, cache=None, gat=True):
# Update graph_states
ret, ret_cache = self.update_state(visible_state, inventory_state, objs, prev_action, cache)
self.pruned_actions_rep = [self.get_action_rep_drqa(a) for a in self.vis_pruned_actions]
inter = self.visible_state
self.drqa_input = self.get_visible_state_rep_drqa(inter)
# Get graph_state_reps
self.graph_state_rep = self.get_state_rep_kge(), self.adj_matrix
self.graph_state_rep_1_connectivity = self.get_state_rep_kge_1(), self.adj_matrix_1_connectivity
self.graph_state_rep_2_roomitem = self.get_state_rep_kge_2(), self.adj_matrix_2_roomitem
self.graph_state_rep_3_youritem = self.get_state_rep_kge_3(), self.adj_matrix_3_youritem
self.graph_state_rep_4_otherroom = self.get_state_rep_kge_4(), self.adj_matrix_4_otherroom
self.graph_state_rep_5_mask = self.get_state_rep_kge_5(), self.adj_matrix_5_mask
return ret, ret_cache
def pad_sequences(sequences, maxlen=None, dtype='int32', value=0.):
'''
Partially borrowed from Keras
# Arguments
sequences: list of lists where each element is a sequence
maxlen: int, maximum length
dtype: type to cast the resulting sequence.
value: float, value to pad the sequences to the desired value.
# Returns
x: numpy array with dimensions (number_of_sequences, maxlen)
'''
lengths = [len(s) for s in sequences]
nb_samples = len(sequences)
if maxlen is None:
maxlen = np.max(lengths)
# take the sample shape from the first non empty sequence
# checking for consistency in the main loop below.
sample_shape = tuple()
for s in sequences:
if len(s) > 0:
sample_shape = np.asarray(s).shape[1:]
break
x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)
for idx, s in enumerate(sequences):
if len(s) == 0:
continue # empty list was found
# pre truncating
trunc = s[-maxlen:]
# check `trunc` has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %
(trunc.shape[1:], idx, sample_shape))
# post padding
x[idx, :len(trunc)] = trunc
return x