-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathconfiguration_unilm.py
88 lines (77 loc) · 3.94 KB
/
configuration_unilm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# coding=utf-8
""" UniLM model configuration """
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import sys
from io import open
from transformers.configuration_utils import PretrainedConfig
logger = logging.getLogger(__name__)
UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'unilm-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/unilm/unilm-large-cased-config.json",
'unilm-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/unilm/unilm-base-cased-config.json"
}
class UnilmConfig(PretrainedConfig):
r"""
:class:`~transformers.UnilmConfig` is the configuration class to store the configuration of a
`UnilmModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `UnilmModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`UnilmModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size=28996,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=6,
initializer_range=0.02,
layer_norm_eps=1e-12,
**kwargs):
super(UnilmConfig, self).__init__(**kwargs)
if isinstance(vocab_size, str):
with open(vocab_size, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size, int):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
else:
raise ValueError("First argument must be either a vocabulary size (int)"
" or the path to a pretrained model config file (str)")