forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_sentiment_analysis.py
210 lines (187 loc) · 8.08 KB
/
finetune_sentiment_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
from pathlib import Path
from visualdl import LogWriter
import numpy as np
import logging
import argparse
import paddle as P
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)
#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
#from ernie.optimization import AdamW, LinearDecay
from demo.utils import create_if_not_exists, get_warmup_and_linear_decay
parser = argparse.ArgumentParser('classify model with ERNIE')
parser.add_argument(
'--from_pretrained',
type=Path,
required=True,
help='pretrained model directory or tag')
parser.add_argument(
'--max_seqlen',
type=int,
default=128,
help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=32, help='batchsize')
parser.add_argument('--epoch', type=int, default=3, help='epoch')
parser.add_argument(
'--data_dir',
type=str,
required=True,
help='data directory includes train / develop data')
parser.add_argument(
'--max_steps',
type=int,
required=True,
help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--eval', action='store_true')
parser.add_argument(
'--save_dir', type=Path, required=True, help='model output directory')
parser.add_argument(
'--init_checkpoint',
type=str,
default=None,
help='checkpoint to warm start from')
parser.add_argument(
'--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
parser.add_argument(
'--use_amp',
action='store_true',
help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
)
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
model = ErnieModelForSequenceClassification.from_pretrained(
args.from_pretrained, num_labels=3, name='')
if not args.eval:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn(
'seg_a',
unk_id=tokenizer.unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn('label'),
])
def map_fn(seg_a, label):
seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, [])
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz)
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz)
g_clip = P.nn.ClipGradByGlobalNorm(1.0) #experimental
lr_scheduler = P.optimizer.lr.LambdaDecay(
args.lr,
get_warmup_and_linear_decay(
args.max_steps, int(args.warmup_proportion * args.max_steps)))
param_name_to_exclue_from_weight_decay = re.compile(
r'.*layer_norm_scale|.*layer_norm_bias|.*b_0')
opt = P.optimizer.AdamW(
lr_scheduler,
parameters=model.parameters(),
weight_decay=args.wd,
apply_decay_param_fun=lambda n: not param_name_to_exclue_from_weight_decay.match(n),
grad_clip=g_clip)
scaler = P.amp.GradScaler(enable=args.use_amp)
with LogWriter(logdir=str(create_if_not_exists(args.save_dir /
'vdl'))) as log_writer:
with P.amp.auto_cast(enable=args.use_amp):
for epoch in range(args.epoch):
for step, d in enumerate(
P.io.DataLoader(
train_ds, places=P.CUDAPlace(0), batch_size=None)):
ids, sids, label = d
loss, _ = model(ids, sids, labels=label)
loss = scaler.scale(loss)
loss.backward()
scaler.minimize(opt, loss)
model.clear_gradients()
lr_scheduler.step()
if step % 10 == 0:
_lr = lr_scheduler.get_lr()
if args.use_amp:
_l = (loss / scaler._scale).numpy()
msg = '[step-%d] train loss %.5f lr %.3e scaling %.3e' % (
step, _l, _lr, scaler._scale.numpy())
else:
_l = loss.numpy()
msg = '[step-%d] train loss %.5f lr %.3e' % (
step, _l, _lr)
log.debug(msg)
log_writer.add_scalar('loss', _l, step=step)
log_writer.add_scalar('lr', _lr, step=step)
if step % 100 == 0:
acc = []
with P.no_grad():
model.eval()
for step, d in enumerate(
P.io.DataLoader(
dev_ds,
places=P.CUDAPlace(0),
batch_size=None)):
ids, sids, label = d
loss, logits = model(ids, sids, labels=label)
a = (logits.argmax(-1) == label)
acc.append(a.numpy())
model.train()
acc = np.concatenate(acc).mean()
log_writer.add_scalar('eval/acc', acc, step=step)
log.debug('acc %.5f' % acc)
if args.save_dir is not None:
P.save(model.state_dict(),
args.save_dir / 'ckpt.bin')
if args.save_dir is not None:
P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
else:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn(
'seg_a',
unk_id=tokenizer.unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
])
sd = P.load(args.init_checkpoint)
model.set_dict(sd)
model.eval()
def map_fn(seg_a):
seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, [])
return sentence, segments
predict_ds = feature_column.build_dataset_from_stdin('predict') \
.map(map_fn) \
.padded_batch(args.bsz)
for step, (ids, sids) in enumerate(
P.io.DataLoader(
predict_ds, places=P.CUDAPlace(0), batch_size=None)):
_, logits = model(ids, sids)
pred = logits.numpy().argmax(-1)
print('\n'.join(map(str, pred.tolist())))