-
Notifications
You must be signed in to change notification settings - Fork 1
/
FedCollaborator.py
306 lines (263 loc) · 14.2 KB
/
FedCollaborator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
FedCollaborator.py
Class for running local training (FedDis); -> delivered to client
"""
import torch
import wandb
import copy
from time import time
from monai.losses import L1Loss, CosineEmbeddingLoss
from monai.optimizers import Adam
from monai.optimizers.lr_scheduler import ExponentialLRDecay
from monai.transforms import RandRectangleMasking, RandAdjustContrast
from monai.ILIA.core.FedCollaborator import FedCollaborator
from monai.ILIA.data.BrainMR.utils import *
from monai.networks.nets import VGGEncoder
from monai.losses import TotalVariationLoss
class FedDisCollaborator(FedCollaborator):
def __init__(self, client_idx, client_name, training_params, model, device, log_wandb=False):
"""
Init function for Client
:param client_idx: int
Id of the client
:param client_name: str
Name of the client
:param training_params: list
parameters for local training routine
:param model: torch.nn.module
Neural network
:param device: torch.device
GPU | CPU
:param log_wandb: bool
Flag for logging results to wandb.ai
"""
super(FedDisCollaborator, self).\
__init__(client_idx=client_idx, client_name=client_name, training_params=training_params, model=model,
device=device, log_wandb=log_wandb)
self.self_sup = training_params['self_supervision']['use']
if self.self_sup:
ses_params = training_params['self_supervision']['params']
self.paint_rectangles = RandRectangleMasking(start_x_range=ses_params['start_x_range'],
start_y_range=ses_params['start_y_range'],
width_range=ses_params['width_range'],
max_rectangles=ses_params['max_rectangles'],
cval=ses_params['cval'])
self.shift_ = RandAdjustContrast(prob=1.0, gamma=self.training_params['optimizer_params']['gamma_shift'])
self.eval_step = 0
self.min_val_loss = np.inf
self.train_step = 0
self.criterion_l1 = L1Loss().to(device)
self.criterion_sl = CosineEmbeddingLoss().to(device)
self.criterion_tv = TotalVariationLoss().to(device)
self.lambda_R = self.training_params['optimizer_params']['lambda_R']
self.lambda_S = self.training_params['optimizer_params']['lambda_S']
self.lambda_L = self.training_params['optimizer_params']['lambda_L']
self.loss_network = VGGEncoder().eval().to(self.device)
self.optimizer = Adam(self.model.parameters(), lr=training_params['optimizer_params']['learning_rate'])
self.decayRate = training_params['optimizer_params']['decay_rate']
self.my_lr_scheduler = ExponentialLRDecay(optimizer=self.optimizer, gamma=self.decayRate)
def load_data(self, dataset_name):
"""
:param dataset_name: str or list
name of the dataset(s) to load
:return:
local_training_data: monai.DataLoader
local_test_data: monai.DataLoader
num_train_samples: int
number of training samples
"""
dataset_name = [dataset_name] if isinstance(dataset_name, str) else dataset_name # make list if input is str
local_training_data, local_test_data, _ = self.data_loader.load_data(dataset_current_list=dataset_name)
return local_training_data, local_test_data
def get_nr_train_samples(self):
return len(self.local_training_data) * self.local_training_data.batch_size
def train(self, w_global, opt_state, round_idx=0):
"""
Train local client
:param w_global: weights
weights of the global model
:param opt_state: state
state of the optimizer
:param round_idx: int
the round number
:return:
self.model.state_dict():
self.optimizer.state_dict():
epoch_loss: float
the loss of the epoch
"""
# return self.client_name, self.model.state_dict(), self.optimizer.state_dict(), epoch_loss
for param in self.model.state_dict():
check_equal = torch.equal(self.model.state_dict()[param], w_global[param])
if not check_equal:
logging.info("************************** model params equal? ({}): {}".format(param, 'different'))
self.model.load_state_dict(w_global) # load weights
self.model.train().to(self.device)
if opt_state is not None:
self.optimizer.load_state_dict(opt_state) # load optimizer
# self.optimizer.state = collections.defaultdict(dict) # reset optimizer
latent_loss = self.training_params['optimizer_params']['latent_loss']
epoch_losses = []
for epoch in range(self.training_params['nr_epochs']):
start_time = time()
batch_loss, batch_loss_l1, batch_loss_scl, batch_loss_lol = 1.0, 1.0, 1.0, 1.0
count_images = 0
for data in self.local_training_data:
# Input
input_all_slices = data[0]
middle_slice, rand_slice = int(input_all_slices.shape[1] / 2), \
np.random.randint(0, input_all_slices.shape[1], 1)[0]
images = input_all_slices[:, np.newaxis, middle_slice, :, :]
b, s, w, h = images.shape
images = images.view(b*s, 1, h, w)
images_cleaned = copy.deepcopy(images)
images_masked = copy.deepcopy(images)
# Intensity augmentation
if self.training_params['optimizer_params']['use_shape_pair']:
# SCL w. second modality
intensity_augmented_images = \
data[1][:, np.newaxis, middle_slice, :, :].view(b*s, h, w).to(self.device)
else:
# SCL w. gamma shift
intensity_augmented_images =\
torch.from_numpy(self.shift_([images_masked.cpu().numpy()])[0]).to(self.device)
if self.self_sup:
# Self-supervision [In-Painting]
for b, img in enumerate(images_cleaned):
images_cleaned[b] = paint_anomalies(img)
# Self-supervision [Masking]
for b, img in enumerate(images_masked):
images_masked[b], intensity_augmented_images[b] = \
self.paint_rectangles([img, intensity_augmented_images[b]])
count_images += images.shape[0]
images, images_cleaned, images_masked \
= images.to(self.device), images_cleaned.to(self.device), images_masked.to(self.device)
# Forward Pass
self.optimizer.zero_grad()
reconstructed_images, f_result = self.model(images_masked)
# Reconstruction Loss
loss_l1 = self.criterion_l1(reconstructed_images, images_cleaned)
if latent_loss:
# Perceptual Loss
input_features = self.loss_network(images_cleaned.repeat(1, 3, 1, 1))
output_features = self.loss_network(reconstructed_images.repeat(1, 3, 1, 1))
l_scl = 0
for output_feature, input_feature in zip(output_features, input_features):
l_scl += self.criterion_l1(output_feature, input_feature)
# TV Loss
l_lol = self.criterion_tv(reconstructed_images)
# z_s, z_a = f_result['z_s'], f_result['z_a']
# z_s_fl, z_a_fl = torch.flatten(z_s, start_dim=1), torch.flatten(z_a, start_dim=1)
#
# # Get shape representations of augmented image
# with torch.no_grad():
# self.test_model.load_state_dict(self.model.state_dict())
# self.test_model.to(self.device).eval()
# _, out_dict = self.test_model(intensity_augmented_images) # shape of augmented appearance
# z_s_shift = out_dict['z_s']
# # Unit projection for shape latent space
# m = torch.nn.Conv2d(z_s.shape[1], z_a.shape[1], 1, stride=1)
# torch.nn.init.ones_(m.weight)
# m = m.to(self.device)
# z_s_ng = m(z_s)
#
# # Train appearance to be orthogonal to shared shape space
# l_lol = self.criterion_sl(z_a_fl, torch.flatten(z_s_ng.detach(), start_dim=1),
# torch.autograd.Variable(torch.Tensor(z_a.size(0)).cuda().fill_(-1.0)))
#
# # Train shape to be consistent under different intensity augmentations
# l_scl = self.criterion_sl(z_s_fl, torch.flatten(z_s_shift.detach(), start_dim=1),
# torch.autograd.Variable(torch.Tensor(z_a.size(0)).cuda().fill_(1.0)))
# Latent Consistency Loss
if round_idx >= self.training_params['optimizer_params']['round_scl_injection']:
loss = loss_l1 + self.lambda_R * (self.lambda_S * l_scl + self.lambda_L * l_lol)
else:
loss = loss_l1
else:
loss = loss_l1
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5) # to avoid nan loss
self.optimizer.step()
batch_loss += loss.item() * images.size(0)
batch_loss_l1 += loss_l1.item() * images.size(0)
if latent_loss:
batch_loss_lol += l_lol.item() * images.size(0)
batch_loss_scl += l_scl.item() * images.size(0)
if count_images >= self.training_params['max_iterations']:
logging.info('Break due to maximal number of local iterations...')
break
epoch_loss = batch_loss / count_images if count_images > 0 else batch_loss
epoch_loss_l1 = batch_loss_l1 / count_images if count_images > 0 else batch_loss_l1
if latent_loss:
epoch_loss_lol = batch_loss_lol / count_images if count_images > 0 else batch_loss_lol
epoch_loss_scl = batch_loss_scl / count_images if count_images > 0 else batch_loss_scl
epoch_losses.append(epoch_loss)
end_time = time()
wandb.log({"Train\Example_" + self.client_name: [
wandb.Image(reconstructed_images.detach().cpu()[0].numpy(),
caption="Reconstruction_" + str(self.train_step))]})
print('Epoch: {} \tTraining Loss: {:.6f} , computed in {} seconds for {} samples'.format(
epoch, epoch_loss, end_time - start_time, count_images))
wandb.log({"Train/Loss_" + self.client_name: epoch_loss, '_step_' + self.client_name: self.train_step})
wandb.log(
{"Train/Loss_l1_" + self.client_name: epoch_loss_l1, '_step_' + self.client_name: self.train_step})
if latent_loss:
wandb.log({"Train/Loss_LOL_" + self.client_name: epoch_loss_lol,
'_step_' + self.client_name: self.train_step})
wandb.log({"Train/Loss_SCL_" + self.client_name: epoch_loss_scl,
'_step_' + self.client_name: self.train_step})
torch.save(self.model.state_dict(), self.client_path + '/latest_model.pt')
self.train_step += 1
if epoch % 3 == 0:
self.test(self.model.state_dict())
return self.client_name, self.model.state_dict(), self.optimizer.state_dict(), \
sum(epoch_losses) / len(epoch_losses)
def test(self, model_weights):
"""
:param model_weights: weights of the global model
:return: dict
metric_name : value
e.g.:
metrics = {
'test_loss_l1': 0,
'test_total': 0
}
"""
# return metrics
self.test_model.load_state_dict(model_weights)
self.test_model.eval().to(self.device)
metrics = {
'test_loss_l1': 0,
}
test_total = 0
with torch.no_grad():
for data in self.local_test_data:
x_all = data[0]
middle_slice = int(x_all.shape[1] / 2)
x = x_all[:, np.newaxis, middle_slice, :, :]
images_cleaned = copy.deepcopy(x)
images_masked = copy.deepcopy(x)
if self.self_sup:
for b, img in enumerate(images_cleaned):
images_cleaned[b] = paint_anomalies(img)
for b, img in enumerate(images_masked): # In-painting techniques
images_masked[b] = self.paint_rectangles([img])[0]
test_total += x.shape[0]
x, images_cleaned, images_masked = \
x.to(self.device), images_cleaned.to(self.device), images_masked.to(self.device)
# Forward pass
out_, _ = self.test_model(images_masked)
y = out_
loss_l1 = self.criterion_l1(y, images_cleaned)
metrics['test_loss_l1'] += loss_l1.item() * x.size(0)
wandb.log({"Test\Example_" + self.client_name: [wandb.Image(
y.detach().cpu()[0].numpy(), caption="Reconstruction_" + str(self.train_step))]})
for metric_key in metrics.keys():
metric_name = 'Test/' + str(metric_key) + '_' + self.client_name
metric_score = metrics[metric_key] / test_total if test_total != 0 else 0
wandb.log({metric_name: metric_score, '_step_' + self.client_name: self.train_step})
if loss_l1 < self.min_val_loss:
self.min_val_loss = loss_l1
torch.save(model_weights, self.client_path + '/best_model.pt')
self.my_lr_scheduler.step()
return metrics, test_total