-
Notifications
You must be signed in to change notification settings - Fork 1
/
FedDownstreamTask.py
288 lines (249 loc) · 12.6 KB
/
FedDownstreamTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
FedDownstreamTask.py
Run Downstream Tasks after training has finished
- Anomaly Detection
- Reconstruction Fidelity
"""
from monai.ILIA.core.FedDownstreamTask import FedDownstreamTask
from monai.losses import L1Loss
from monai.transforms import ToRGB, MedianFilter
from monai.metrics import DiceScore, PRCMetric, SSIMMetric, compute_meandice, \
get_confusion_matrix, compute_confusion_matrix_metric
import torch
import logging
import numpy as np
import cv2
import copy
import wandb
import matplotlib.pyplot as plt
import plotly.graph_objects as go
class FedDisDownstreamTask(FedDownstreamTask):
"""
Federated Downstream Tasks
- run tasks training_end, e.g. anomaly detection, reconstruction fidelity, disease classification, etc..
"""
def __init__(self, model, device, params, test_data_dict, log_wandb):
self.checkpoint_path = params['checkpoint_path']
self.model = model.to(device)
self.healthy_data = test_data_dict[0]
self.anomaly_data = test_data_dict[1]
self.test_data_dict = test_data_dict
self.device = device
self.criterion_l1 = L1Loss().to(self.device)
self.ssim = SSIMMetric(data_range=1., reduction='none')
self.median_filter = MedianFilter(median_kernel=3)
self.dice_score = DiceScore()
self.precision_recall_curve = PRCMetric()
self.img2RBG = ToRGB(255, 255, 255)
self.mask2RGB = ToRGB(255, 5, 159)
super(FedDisDownstreamTask, self).__init__(model, device, params, test_data_dict, log_wandb)
def start_task(self, global_models):
"""
Function to perform analysis after training is complete, e.g., call downstream tasks routines, e.g.
anomaly detection, classification, etc..
:param global_models: dict
dictionary with the model weights of the federated collaborators
"""
self.anomaly_test(global_models)
self.reconstruction_fidelity(global_models)
def anomaly_test(self, global_models):
"""
Validation on all clients after a number of rounds
Logs results to wandb
:param model_global:
Global parameters
:param round_idx: int
Round number
"""
logging.info("################ ANOMALY TEST ON ALL CLIENTS #####################")
client_metrics = dict()
metrics = ['AUPRC', 'DICE']
# VOLUME threshold computed in an unsupervised manner to achieve < 1% FPR on healthy data
# ths =[Oasis, Adni-S, Adni-P, KRI] # Method
# ths = [0.0681, 0.0671, 0.0721, 0.0631] # Local
# ths = [0.0831, 0.0701, 0.0691, 0.0541] # FedAvg
# ths = [0.0691, 0.0691, 0.0691, 0.0691] # FedAvg
# ths = [0.0871, 0.0501, 0.0791, 0.0450] # SiloBN
ths = [0.0731, 0.0691, 0.0521, 0.0350] # FedLCL
# ths = [0.0541, 0.0801, 0.0611, 0.0480] # FedLOL
# ths = [0.0731, 0.0691, 0.0511, 0.0340] # FedSCL
# ths = [0.0691, 0.0641, 0.0571, 0.0440] # FedDis
# ths = [0.0561, 0.0561, 0.0561, 0.0561] # DC
# ths = []
for c_id, client_key in enumerate(global_models.keys()):
th = ths[c_id]
client_metrics[client_key] = dict()
self.model.load_state_dict(global_models[client_key])
self.model.eval()
for metric in metrics:
client_metrics[client_key][metric] = []
for d_id, dataset_key in enumerate(self.anomaly_data.keys()):
# th = ths[d_id]
dataset = self.anomaly_data[dataset_key]
test_metrics = dict()
for metric in metrics:
test_metrics[metric] = []
logging.info('DATASET: {}'.format(dataset_key))
predictions, labels, save_labels, residuals, orig = [], [], [], [], []
for idx, data in enumerate(dataset):
x, masks, brains = data[0].to(self.device), data[1], data[2]
nr_batches, nr_slices, width, height = x.shape
x_input = x.view(nr_batches * nr_slices, 1, width, height)
# Forward pass
x_rec, _ = self.model(x_input)
## !!!To compute simple post-processing on input image !!
# x_rec_dict = dict()
# x_rec_dict['x_rec'] = torch.zeros(x_input.shape)
x_rec = x_rec.view(nr_batches, nr_slices, width, height)
x, x_rec, masks, brains = x.cpu().detach().numpy(), x_rec.cpu().detach().numpy(), \
masks.cpu().detach().numpy(), brains.cpu().detach().numpy()
# Post processing
diff = cv2.subtract(x, x_rec) # Residual
diff[diff < 0] = 0 # Keep positive residual
diff_pp = self.median_filter(diff) # Median Filter
if predictions == []:
predictions = diff_pp
labels = masks
else:
predictions = np.concatenate([predictions, diff_pp])
labels = np.concatenate([labels, masks])
diff_dice = copy.deepcopy(diff_pp)
# Binarization
diff_dice[diff_dice < th] = 0
diff_dice[diff_dice > 0] = 1
slice_dice, slice_mask = torch.from_numpy(diff_dice), torch.from_numpy(masks)
# Additional metrics
test_metrics['DICE'].append(self.dice_score(slice_dice, slice_mask))
orig.append(x)
residuals.append(diff)
save_labels.append(masks)
# Visual examples in wandb
if idx % 10 == 0:
auprc_slice, _, _, _ = self.precision_recall_curve(torch.from_numpy(diff_pp),
torch.from_numpy(masks))
mid_slice = max(1, int(nr_slices / 2))
count_ = str(idx * nr_batches) + '-' + str(mid_slice)
img_color = self.img2RBG(x[0][mid_slice])
x_rec_color = self.img2RBG(x_rec[0][mid_slice])
mask_color = self.mask2RGB(masks[0][mid_slice].astype(bool))
grid_image = np.hstack([img_color, x_rec_color, mask_color])
wandb.log({"Anomaly_Reconstructions/" + client_key + '_' + dataset_key + '_' + str(count_) + '_' +
str(mid_slice) + '_' + str(auprc_slice):
[wandb.Image(grid_image, caption="Anomaly_" + str(count_))]})
plt.figure()
diffp = plt.imshow(diff_pp[0][mid_slice], cmap='jet')
wandb.log({"Anomaly_Heatmaps/" + client_key + '_' + dataset_key + '_' + str(count_) + '_' +
str(mid_slice) + '_' + str(auprc_slice):
[wandb.Image(diffp, caption="Anomaly_" + str(count_))]})
plt.close()
auprc, precisions, recalls, thresholds = self.precision_recall_curve(torch.from_numpy(predictions),
torch.from_numpy(labels))
test_metrics['AUPRC'].append(auprc)
for metric in test_metrics:
logging.info('{} mean: {} +/- {}'.format(metric, np.nanmean(test_metrics[metric]),
np.nanstd(test_metrics[metric])))
client_metrics[client_key][metric].append(test_metrics[metric])
# Save results for further processing
print(type(self.checkpoint_path))
print(self.checkpoint_path)
np.save(self.checkpoint_path + '/' + str(client_key) + ' ' + str(dataset_key) + '_orig.npy', np.asarray(orig))
np.save(self.checkpoint_path + '/' + str(client_key) + '_' + str(dataset_key) + '_residuals.npy', np.asarray(residuals))
np.save(self.checkpoint_path + '/' + str(client_key) + '_' + str(dataset_key) + '_labels.npy', np.asarray(save_labels))
logging.info('Writing Box plots...')
for metric in metrics:
fig_bp = go.Figure()
for ck in client_metrics.keys():
x = []
y = []
for idx, dataset_values in enumerate(client_metrics[ck][metric]):
logging.info('IDX: {}'.format(idx))
dataset_name = list(self.anomaly_data)[idx]
for dataset_val in dataset_values:
y.append(dataset_val)
x.append(dataset_name)
fig_bp.add_trace(go.Box(
y=y,
x=x,
name=ck,
boxmean='sd'
))
title = metric
fig_bp.update_layout(
yaxis_title=title,
boxmode='group', # group together boxes of the different traces for each value of x
yaxis=dict(range=[0, 1]),
)
fig_bp.update_yaxes(range=[0, 1], title_text='score', tick0=0, dtick=0.1, showgrid=False)
wandb.log({"Anomaly_Metrics/" + str(metric): fig_bp})
def reconstruction_fidelity(self, global_models):
"""
Validation on all clients after a number of rounds
Logs results to wandb
:param model_global:
Global parameters
:param round_idx: int
Round number
"""
logging.info("################ RECONSTRUCTION TEST #################")
client_metrics = dict()
metrics = ['losses_l1', 'SSIM']
for client_key in global_models.keys():
self.model.load_state_dict(global_models[client_key])
self.model.eval()
client_metrics[client_key] = {
'losses_l1': [],
'SSIM': []
}
for dataset_key in self.healthy_data.keys():
dataset = self.healthy_data[dataset_key]
test_metrics = {
'losses_l1': [],
'SSIM': []
}
img_ct = -1
logging.info('DATASET: {}'.format(dataset_key))
for idx, data in enumerate(dataset):
img_ct += 1
x_all = data[0]
middle_slice = int(x_all.shape[1] / 2)
x = x_all[:, np.newaxis, middle_slice, :, :].to(self.device)
x_rec, _ = self.model(x)
for i in range(len(x)):
count = str(i * img_ct)
x_ = x[i][0]
x_rec_ = x_rec[i][0]
loss_l1 = self.criterion_l1(x_rec_, x_)
x_ = x_.cpu().detach()
x_rec_ = x_rec_.cpu().detach()
ssim_ = self.ssim(x_rec_, x_)
test_metrics['losses_l1'].append(loss_l1.item())
test_metrics['SSIM'].append(ssim_)
for metric in test_metrics:
logging.info('{} mean: {} +/- {}'.format(metric, np.nanmean(test_metrics[metric]),
np.nanstd(test_metrics[metric])))
client_metrics[client_key][metric].append(test_metrics[metric])
logging.info('Writing plots...')
for metric in metrics:
fig_bp = go.Figure()
for ck in client_metrics.keys():
x = []
y = []
for idx, dataset_values in enumerate(client_metrics[ck][metric]):
dataset_name = list(self.healthy_data)[idx]
for dataset_val in dataset_values:
y.append(dataset_val)
x.append(dataset_name)
fig_bp.add_trace(go.Box(
y=y,
x=x,
name=ck,
boxmean='sd'
))
title = 'score'
fig_bp.update_layout(
yaxis_title=title,
boxmode='group', # group together boxes of the different traces for each value of x
yaxis=dict(range=[0, 1]),
)
fig_bp.update_yaxes(range=[0, 1], title_text='score', tick0=0, dtick=0.1, showgrid=False)
wandb.log({"Reconstruction_Metrics(Healthy)/" + str(metric): fig_bp})