-
Notifications
You must be signed in to change notification settings - Fork 22
/
opt.py
251 lines (180 loc) · 12.2 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding: utf-8 -*-
import os
opt = {}
##################################################### Frequently Changed Setting ###########################################################
opt['description'] = "4x_GRL_paper" # Description to add to the log
opt['architecture'] = "GRL" # "ESRNET" || "ESRGAN" || "GRL" || "GRLGAN" (GRL only support 4x)
# Essential Setting
opt['scale'] = 4 # In default, this is 4x
opt["full_patch_source"] = "../datasets_anime/APISR_dataset" # The HR image without cropping
opt["degrade_hr_dataset_path"] = "datasets/train_hr" # The cropped GT images
opt["train_hr_dataset_path"] = "datasets/train_hr_enhanced" # The cropped Pseudo-GT path (after hand-drawn line enhancement)
################################################################################################################################
# GPU setting
opt['CUDA_VISIBLE_DEVICES'] = '0' # '0' / '1' based on different GPU you have.
os.environ['CUDA_VISIBLE_DEVICES'] = opt['CUDA_VISIBLE_DEVICES']
##################################################### Setting for General Training #############################################
# Dataset Setting
opt["lr_dataset_path"] = "datasets/train_lr" # Where you temporally store the LR synthetic images
opt['hr_size'] = 256
# Loss function
opt['pixel_loss'] = "L1" # Usually it is "L1"
# Adam optimizer setting
opt["adam_beta1"] = 0.9
opt["adam_beta2"] = 0.99
opt['decay_gamma'] = 0.5 # Decay the learning rate per decay_iteration
# Miscellaneous Setting
opt['degradate_generation_freq'] = 1 # How frequent we degradate HR to LR (1: means Real-Time Degrade) [No need to change this]
opt['train_dataloader_workers'] = 5 # Number of workers for DataLoader
opt['checkpoints_freq'] = 50 # frequency to store checkpoints in the folder (unit: epoch)
#################################################################################################################################
# Add setting for different architecture (Please go through the model architecture you want!)
if opt['architecture'] == "ESRNET":
# Setting for ESRNET Training
opt['ESR_blocks_num'] = 6 # How many RRDB blocks you need
opt['train_iterations'] = 500000 # Training Iterations (500K for large resolution large dataset overlap training)
opt['train_batch_size'] = 32 #
# Learning Rate
opt["start_learning_rate"] = 0.0002 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt['decay_iteration'] = 100000 # Decay iteration
opt['double_milestones'] = [] # Iteration based time you double your learning rate
elif opt['architecture'] == "ESRGAN":
# Setting for ESRGAN Training
opt['ESR_blocks_num'] = 6 # How many RRDB blocks you need
opt['train_iterations'] = 200000 # Training Iterations
opt['train_batch_size'] = 32 #
# Learning Rate
opt["start_learning_rate"] = 0.0001 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt['decay_iteration'] = 100000 # Fixed decay gap
opt['double_milestones'] = [] # Just put this empty
# Perceptual loss
opt["danbooru_perceptual_loss_weight"] = 0.5 # ResNet50 Danbooru Perceptual loss weight scale
opt["vgg_perceptual_loss_weight"] = 0.5 # VGG PhotoRealistic Perceptual loss weight scale
opt['train_perceptual_vgg_type'] = 'vgg19' # VGG16/19 (Just use 19 by default)
opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1} # Middle-Layer weight for VGG
opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1} # Middle-Layer weight for ResNet
# GAN loss
opt["discriminator_type"] = "PatchDiscriminator" # "PatchDiscriminator" || "UNetDiscriminator"
opt["gan_loss_weight"] = 0.2 #
elif opt['architecture'] == "CUNET":
# Setting for CUNET Training
opt['train_iterations'] = 500000 # Training Iterations (700K for large resolution large dataset overlap training)
opt['train_batch_size'] = 16
opt["start_learning_rate"] = 0.0002 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt['decay_iteration'] = 100000 # Decay iteration
opt['double_milestones'] = [] # Iteration based time you double your learning rate
elif opt['architecture'] == "CUGAN":
# Setting for ESRGAN Training
opt['ESR_blocks_num'] = 6 # How many RRDB blocks you need
opt['train_iterations'] = 200000 # Training Iterations
opt['train_batch_size'] = 16
opt["start_learning_rate"] = 0.0001 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt["perceptual_loss_weight"] = 1.0
opt['train_perceptual_vgg_type'] = 'vgg19'
opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1}
opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1} # Middle-Layer weight for ResNet
opt["gan_loss_weight"] = 0.2 # This one is very important, Don't neglect it. Based on the paper, it should be 0.1 scale
opt['decay_iteration'] = 100000 # Decay iteration
opt['double_milestones'] = [] # Iteration based time you double your learning rate
elif opt['architecture'] == "GRL": # L1 loss training version
# Setting for GRL Training
opt['model_size'] = "tiny2" # "tiny2" in default
opt['train_iterations'] = 300000 # Training Iterations
opt['train_batch_size'] = 32 # 4x: 32 (256x256); 2x: 4?
# Learning Rate
opt["start_learning_rate"] = 0.0002 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt['decay_iteration'] = 100000 # Decay iteration
opt['double_milestones'] = [] # Iteration based time you double your learning rate (Just ignore this one)
elif opt['architecture'] == "GRLGAN": # L1 + Preceptual + Discriminator Loss version
# Setting for GRL Training
opt['model_size'] = "tiny2" # "small" || "tiny" || "tiny2" (Use tiny2 by default, No need to change)
# Setting for GRL-GAN Traning
opt['train_iterations'] = 300000 # Training Iterations
opt['train_batch_size'] = 32 # 4x: 32 batch size (for 256x256); 2x: 4
# Learning Rate
opt["start_learning_rate"] = 0.0001 # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
opt['decay_iteration'] = 100000 # Fixed decay gap
opt['double_milestones'] = [] # Just put this empty
# Perceptual loss
opt["danbooru_perceptual_loss_weight"] = 0.5 # ResNet50 Danbooru Perceptual loss weight scale
opt["vgg_perceptual_loss_weight"] = 0.5 # VGG PhotoRealistic Perceptual loss weight scale
opt['train_perceptual_vgg_type'] = 'vgg19' # VGG16/19 (Just use 19 by default)
opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1} # Middle-Layer weight for VGG
opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1} # Middle-Layer weight for ResNet
# GAN loss
opt["discriminator_type"] = "PatchDiscriminator" # "PatchDiscriminator" || "UNetDiscriminator"
opt["gan_loss_weight"] = 0.2 #
else:
raise NotImplementedError("Please check you architecture option setting!")
# Basic setting for degradation
opt["degradation_batch_size"] = 128 # Degradation batch size
opt["augment_prob"] = 0.5 # Probability of augmenting (Flip, Rotate) the HR and LR dataset in dataset loading part
if opt['architecture'] in ["ESRNET", "ESRGAN", "GRL", "GRLGAN", "CUNET", "CUGAN"]:
# Parallel Process
opt['parallel_num'] = 8 # Multi-Processing num; Recommend 6
# Blur kernel1
opt['kernel_range'] = [3, 11]
opt['kernel_list'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
opt['kernel_prob'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
opt['sinc_prob'] = 0.1
opt['blur_sigma'] = [0.2, 3]
opt['betag_range'] = [0.5, 4]
opt['betap_range'] = [1, 2]
# Blur kernel2
opt['kernel_list2'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
opt['kernel_prob2'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
opt['sinc_prob2'] = 0.1
opt['blur_sigma2'] = [0.2, 1.5]
opt['betag_range2'] = [0.5, 4]
opt['betap_range2'] = [1, 2]
# The first degradation process
opt['resize_prob'] = [0.2, 0.7, 0.1]
opt['resize_range'] = [0.1, 1.2] # Was [0.15, 1.5] in Real-ESRGAN
opt['gaussian_noise_prob'] = 0.5
opt['noise_range'] = [1, 30]
opt['poisson_scale_range'] = [0.05, 3]
opt['gray_noise_prob'] = 0.4
opt['jpeg_range'] = [30, 95]
# The second degradation process
opt['second_blur_prob'] = 0.8
opt['resize_prob2'] = [0.2, 0.7, 0.1] # [up, down, keep] Resize Probability
opt['resize_range2'] = [0.15, 1.2]
opt['gaussian_noise_prob2'] = 0.5
opt['noise_range2'] = [1, 25]
opt['poisson_scale_range2'] = [0.05, 2.5]
opt['gray_noise_prob2'] = 0.4
# Other common settings
opt['resize_options'] = ['area', 'bilinear', 'bicubic'] # Should be supported by F.interpolate
# First image compression
opt['compression_codec1'] = ["jpeg", "webp", "heif", "avif"] # Compression codec: heif is the intra frame version of HEVC (H.265) and avif is the intra frame version of AV1
opt['compression_codec_prob1'] = [0.4, 0.6, 0.0, 0.0]
# Specific Setting
opt["jpeg_quality_range1"] = [20, 95]
opt["webp_quality_range1"] = [20, 95]
opt["webp_encode_speed1"] = [0, 6]
opt["heif_quality_range1"] = [30, 100]
opt["heif_encode_speed1"] = [0, 6] # Useless now
opt["avif_quality_range1"] = [30, 100]
opt["avif_encode_speed1"] = [0, 6] # Useless now
######################################## Setting for Degradation with Intra-Prediction ########################################
opt['compression_codec2'] = ["jpeg", "webp", "avif", "mpeg2", "mpeg4", "h264", "h265"] # Compression codec: similar to VCISR but more intense degradation settings
opt['compression_codec_prob2'] = [0.06, 0.1, 0.1, 0.12, 0.12, 0.3, 0.2]
# Image compression setting
opt["jpeg_quality_range2"] = [20, 95]
opt["webp_quality_range2"] = [20, 95]
opt["webp_encode_speed2"] = [0, 6]
opt["avif_quality_range2"] = [20, 95]
opt["avif_encode_speed2"] = [0, 6] # Useless now
# Video compression I-Frame setting
opt['h264_crf_range2'] = [23, 38]
opt['h264_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
opt['h264_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]
opt['h265_crf_range2'] = [28, 42]
opt['h265_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
opt['h265_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]
opt['mpeg2_quality2'] = [8, 31] # linear scale 2-31 (the lower the higher quality)
opt['mpeg2_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
opt['mpeg2_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]
opt['mpeg4_quality2'] = [8, 31] # should be the same as mpeg2_quality2
opt['mpeg4_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
opt['mpeg4_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]