-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsvd_interpolate_single_img_dgs.py
1142 lines (898 loc) · 47 KB
/
svd_interpolate_single_img_dgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import cv2
import PIL
from PIL import Image
import os
import json
import math
import datetime
import time
import traceback
from pathlib import Path
from typing import Tuple, Optional
import matplotlib.pyplot as plt
import torch.nn as nn
import skimage.io
import numpy as np
import collections
import struct
import argparse
import inspect
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
import os
import cv2
import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.image_processor import VaeImageProcessor
from diffusers import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
from diffusers import EulerDiscreteScheduler
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines import DiffusionPipeline
from einops import rearrange, repeat
import copy
import torchvision
from diffusers.utils import load_image, export_to_video
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
# Based on:
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
return outputs
@dataclass
class StableVideoDiffusionPipelineOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
frames: Union[List[PIL.Image.Image], np.ndarray]
import torch.nn.functional as F
class StableVideoDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline to generate video from an input image using Stable Video Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
unet ([`UNetSpatioTemporalConditionModel`]):
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
scheduler ([`EulerDiscreteScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images.
"""
model_cpu_offload_seq = "image_encoder->unet->vae"
_callback_tensor_inputs = ["latents"]
def __init__(
self,
vae: AutoencoderKLTemporalDecoder,
image_encoder: CLIPVisionModelWithProjection,
unet: UNetSpatioTemporalConditionModel,
scheduler: EulerDiscreteScheduler,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image)
image = self.image_processor.numpy_to_pt(image)
# We normalize the image before resizing to match with the original implementation.
# Then we unnormalize it after resizing.
image = image * 2.0 - 1.0
image = _resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
return image_embeddings
def _encode_vae_image(
self,
image: torch.Tensor,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
):
image = image.to(device=device)
image_latents = self.vae.encode(image).latent_dist.mode()
if do_classifier_free_guidance:
negative_image_latents = torch.zeros_like(image_latents)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_latents = torch.cat([negative_image_latents, image_latents])
# duplicate image_latents for each generation per prompt, using mps friendly method
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
return image_latents
def _get_add_time_ids(
self,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
):
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
if do_classifier_free_guidance:
add_time_ids = torch.cat([add_time_ids, add_time_ids])
return add_time_ids
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
latents = latents.flatten(0, 1)
latents = 1 / self.vae.config.scaling_factor * latents
accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys())
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
num_frames = num_frames
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
frames = frames.float()
return frames
def check_inputs(self, image, height, width):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
def prepare_latents(
self,
batch_size,
num_frames,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_frames,
num_channels_latents // 2,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
temp_cond,
mask,
lambda_ts,
weight_clamp,
height: int = 576,
width: int = 1024,
num_frames: Optional[int] = None,
num_inference_steps: int = 25,
min_guidance_scale: float = 1.0,
max_guidance_scale: float = 3.0,
fps: int = 7,
motion_bucket_id: int = 127,
noise_aug_strength: int = 0.02,
decode_chunk_size: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
return_dict: bool = True,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_frames (`int`, *optional*):
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
min_guidance_scale (`float`, *optional*, defaults to 1.0):
The minimum guidance scale. Used for the classifier free guidance with first frame.
max_guidance_scale (`float`, *optional*, defaults to 3.0):
The maximum guidance scale. Used for the classifier free guidance with last frame.
fps (`int`, *optional*, defaults to 7):
Frames per second. The rate at which the generated images shall be exported to a video after generation.
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
motion_bucket_id (`int`, *optional*, defaults to 127):
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
noise_aug_strength (`int`, *optional*, defaults to 0.02):
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
Examples:
```py
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
image = image.resize((1024, 576))
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
# 1. Check inputs. Raise error if not correct
self.check_inputs(image, height, width)
num_frames = 25
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = max_guidance_scale > 1.0
length = len(image)
# 3. Encode input image
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
# is why it is reduced here.
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
fps = fps - 1
# 4. Encode input image using VAE
image = self.image_processor.preprocess(image, height=height, width=width)
mask = mask.cuda()
mask = mask.unsqueeze(1).unsqueeze(0).repeat(1,1,4,1,1)
temp_cond_list = []
for i in range(len(temp_cond)):
temp_cond_ = self.image_processor.preprocess(temp_cond[i], height=height, width=width)
temp_cond_list.append(temp_cond_)
temp_cond = torch.cat(temp_cond_list,dim=0)
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)
image = image + noise_aug_strength * noise
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
image_latents = self._encode_vae_image(image[0:1,:,:,:], device, num_videos_per_prompt, do_classifier_free_guidance) # [2, 4, 72, 128]
temp_cond_latents_list = []
for i in range(temp_cond.shape[0]):
temp_cond_latents_ = self._encode_vae_image(temp_cond[i:i+1,:,:,:], device, num_videos_per_prompt, do_classifier_free_guidance) # [12, 4, 72, 128]
temp_cond_latents_ = rearrange(temp_cond_latents_, "(b f) c h w -> b f c h w",b=2)
temp_cond_latents_list.append(temp_cond_latents_)
temp_cond_latents = torch.cat(temp_cond_latents_list,dim=1)
image_latents = rearrange(image_latents, "(b f) c h w -> b f c h w",f=1)
temp_cond_latents = torch.cat((image_latents,temp_cond_latents),dim=1)
image_latents = image_latents.to(image_embeddings.dtype)
image_latents = image_latents.repeat(1, num_frames, 1, 1, 1)
factor_s = 5.6
temp_cond_latents = temp_cond_latents/factor_s
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
image_embeddings.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
)
added_time_ids = added_time_ids.to(device)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
# 7. Prepare guidance scale
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
guidance_scale = guidance_scale.to(device, latents.dtype)
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
guidance_scale = _append_dims(guidance_scale, latents.ndim)
self._guidance_scale = guidance_scale
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t,step_i=i)
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings,
added_time_ids=added_time_ids,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step_single_dgs(noise_pred, t, latents,temp_cond_latents,mask,lambda_ts,step_i=i).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
with torch.no_grad():
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
else:
frames = latents
self.maybe_free_model_hooks()
if not return_dict:
return frames
return StableVideoDiffusionPipelineOutput(frames=frames)
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out
def forward_warp(frame1: np.ndarray, mask1: Optional[np.ndarray], depth1: np.ndarray,
transformation1: np.ndarray, transformation2: np.ndarray, intrinsic1: np.ndarray,
intrinsic2: Optional[np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray,
np.ndarray]:
"""
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using
bilinear splatting.
:param frame1: (h, w, 3) uint8 np array
:param mask1: (h, w) bool np array. Wherever mask1 is False, those pixels are ignored while warping. Optional
:param depth1: (h, w) float np array.
:param transformation1: (4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1]
:param transformation2: (4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1]
:param intrinsic1: (3, 3) camera intrinsic matrix
:param intrinsic2: (3, 3) camera intrinsic matrix. Optional
"""
h, w = frame1.shape[:2]
if mask1 is None:
mask1 = np.ones(shape=(h, w), dtype=bool)
if intrinsic2 is None:
intrinsic2 = np.copy(intrinsic1)
assert frame1.shape == (h, w, 3)
assert mask1.shape == (h, w)
assert depth1.shape == (h, w)
assert transformation1.shape == (4, 4)
assert transformation2.shape == (4, 4)
assert intrinsic1.shape == (3, 3)
assert intrinsic2.shape == (3, 3)
trans_points1,world_points = compute_transformed_points(depth1, transformation1, transformation2, intrinsic1,
intrinsic2)
trans_coordinates = trans_points1[:, :, :2, 0] / (trans_points1[:, :, 2:3, 0])
trans_depth1 = trans_points1[:, :, 2, 0]
grid = create_grid(h, w)
flow12 = trans_coordinates - grid
warped_frame2, mask2 = bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=True)
return warped_frame2, mask2,flow12
def compute_transformed_points(depth1: np.ndarray, transformation1: np.ndarray,
transformation2: np.ndarray, intrinsic1: np.ndarray,
intrinsic2: Optional[np.ndarray]):
"""
Computes transformed position for each pixel location
"""
h, w = depth1.shape
if intrinsic2 is None:
intrinsic2 = np.copy(intrinsic1)
transformation = np.matmul(transformation2, np.linalg.inv(transformation1))
y1d = np.array(range(h))
x1d = np.array(range(w))
x2d, y2d = np.meshgrid(x1d, y1d)
ones_2d = np.ones(shape=(h, w))
ones_4d = ones_2d[:, :, None, None]
pos_vectors_homo = np.stack([x2d, y2d, ones_2d], axis=2)[:, :, :, None]
intrinsic1_inv = np.linalg.inv(intrinsic1)
intrinsic1_inv_4d = intrinsic1_inv[None, None]
intrinsic2_4d = intrinsic2[None, None]
depth_4d = depth1[:, :, None, None]
trans_4d = transformation[None, None]
unnormalized_pos = np.matmul(intrinsic1_inv_4d, pos_vectors_homo)
world_points = depth_4d * unnormalized_pos
world_points_homo = np.concatenate([world_points, ones_4d], axis=2)
trans_world_homo = np.matmul(trans_4d, world_points_homo)
trans_world = trans_world_homo[:, :, :3]
trans_norm_points = np.matmul(intrinsic2_4d, trans_world)
return trans_norm_points,world_points
def bilinear_splatting(frame1: np.ndarray, mask1: Optional[np.ndarray], depth1: np.ndarray,
flow12: np.ndarray, flow12_mask: Optional[np.ndarray], is_image: bool = False) -> \
Tuple[np.ndarray, np.ndarray]:
"""
Using inverse bilinear interpolation based splatting
:param frame1: (h, w, c)
:param mask1: (h, w): True if known and False if unknown. Optional
:param depth1: (h, w)
:param flow12: (h, w, 2)
:param flow12_mask: (h, w): True if valid and False if invalid. Optional
:param is_image: If true, the return array will be clipped to be in the range [0, 255] and type-casted to uint8
:return: warped_frame2: (h, w, c)
mask2: (h, w): True if known and False if unknown
"""
h, w, c = frame1.shape
if mask1 is None:
mask1 = np.ones(shape=(h, w), dtype=bool)
if flow12_mask is None:
flow12_mask = np.ones(shape=(h, w), dtype=bool)
grid = create_grid(h, w)
trans_pos = flow12 + grid
trans_pos_offset = trans_pos + 1
trans_pos_floor = np.floor(trans_pos_offset).astype('int')
trans_pos_ceil = np.ceil(trans_pos_offset).astype('int')
trans_pos_offset[:, :, 0] = np.clip(trans_pos_offset[:, :, 0], a_min=0, a_max=w + 1)
trans_pos_offset[:, :, 1] = np.clip(trans_pos_offset[:, :, 1], a_min=0, a_max=h + 1)
trans_pos_floor[:, :, 0] = np.clip(trans_pos_floor[:, :, 0], a_min=0, a_max=w + 1)
trans_pos_floor[:, :, 1] = np.clip(trans_pos_floor[:, :, 1], a_min=0, a_max=h + 1)
trans_pos_ceil[:, :, 0] = np.clip(trans_pos_ceil[:, :, 0], a_min=0, a_max=w + 1)
trans_pos_ceil[:, :, 1] = np.clip(trans_pos_ceil[:, :, 1], a_min=0, a_max=h + 1)
prox_weight_nw = (1 - (trans_pos_offset[:, :, 1] - trans_pos_floor[:, :, 1])) * \
(1 - (trans_pos_offset[:, :, 0] - trans_pos_floor[:, :, 0]))
prox_weight_sw = (1 - (trans_pos_ceil[:, :, 1] - trans_pos_offset[:, :, 1])) * \
(1 - (trans_pos_offset[:, :, 0] - trans_pos_floor[:, :, 0]))
prox_weight_ne = (1 - (trans_pos_offset[:, :, 1] - trans_pos_floor[:, :, 1])) * \
(1 - (trans_pos_ceil[:, :, 0] - trans_pos_offset[:, :, 0]))
prox_weight_se = (1 - (trans_pos_ceil[:, :, 1] - trans_pos_offset[:, :, 1])) * \
(1 - (trans_pos_ceil[:, :, 0] - trans_pos_offset[:, :, 0]))
sat_depth1 = np.clip(depth1, a_min=0, a_max=5000)
log_depth1 = np.log(1 + sat_depth1)
depth_weights = np.exp(log_depth1 / log_depth1.max() * 50)
weight_nw = prox_weight_nw * mask1 * flow12_mask / depth_weights
weight_sw = prox_weight_sw * mask1 * flow12_mask / depth_weights
weight_ne = prox_weight_ne * mask1 * flow12_mask / depth_weights
weight_se = prox_weight_se * mask1 * flow12_mask / depth_weights
weight_nw_3d = weight_nw[:, :, None]
weight_sw_3d = weight_sw[:, :, None]
weight_ne_3d = weight_ne[:, :, None]
weight_se_3d = weight_se[:, :, None]
warped_image = np.zeros(shape=(h + 2, w + 2, c), dtype=np.float64)
warped_weights = np.zeros(shape=(h + 2, w + 2), dtype=np.float64)
np.add.at(warped_image, (trans_pos_floor[:, :, 1], trans_pos_floor[:, :, 0]), frame1 * weight_nw_3d)
np.add.at(warped_image, (trans_pos_ceil[:, :, 1], trans_pos_floor[:, :, 0]), frame1 * weight_sw_3d)
np.add.at(warped_image, (trans_pos_floor[:, :, 1], trans_pos_ceil[:, :, 0]), frame1 * weight_ne_3d)
np.add.at(warped_image, (trans_pos_ceil[:, :, 1], trans_pos_ceil[:, :, 0]), frame1 * weight_se_3d)
np.add.at(warped_weights, (trans_pos_floor[:, :, 1], trans_pos_floor[:, :, 0]), weight_nw)
np.add.at(warped_weights, (trans_pos_ceil[:, :, 1], trans_pos_floor[:, :, 0]), weight_sw)
np.add.at(warped_weights, (trans_pos_floor[:, :, 1], trans_pos_ceil[:, :, 0]), weight_ne)
np.add.at(warped_weights, (trans_pos_ceil[:, :, 1], trans_pos_ceil[:, :, 0]), weight_se)
cropped_warped_image = warped_image[1:-1, 1:-1]
cropped_weights = warped_weights[1:-1, 1:-1]
mask = cropped_weights > 0
mask2 = cropped_weights <=0.6
mask = mask*mask2
with np.errstate(invalid='ignore'):
warped_frame2 = np.where(mask[:, :, None], cropped_warped_image / cropped_weights[:, :, None], 0)
if is_image:
assert np.min(warped_frame2) >= 0
assert np.max(warped_frame2) <= 256
clipped_image = np.clip(warped_frame2, a_min=0, a_max=255)
warped_frame2 = np.round(clipped_image).astype('uint8')
return warped_frame2, mask
def create_grid(h, w):
x_1d = np.arange(0, w)[None]
y_1d = np.arange(0, h)[:, None]
x_2d = np.repeat(x_1d, repeats=h, axis=0)
y_2d = np.repeat(y_1d, repeats=w, axis=1)
grid = np.stack([x_2d, y_2d], axis=2)
return grid
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
def look_at_matrix(camera_position, target, up):
# Camera's forward vector (z-axis)
forward = normalize(target - camera_position)
# Camera's right vector (x-axis)
right = normalize(np.cross(up, forward))
# Camera's up vector (y-axis), ensure it is orthogonal to the other two axes
up = np.cross(forward, right)
# Create the rotation matrix by combining the camera axes to form a basis
rotation = np.array([
[right[0], up[0], forward[0], 0],
[right[1], up[1], forward[1], 0],
[right[2], up[2], forward[2], 0],
[0, 0, 0, 1]
])
# Create the translation matrix
translation = np.array([
[1, 0, 0, -camera_position[0]],
[0, 1, 0, -camera_position[1]],
[0, 0, 1, -camera_position[2]],
[0, 0, 0, 1]
])
# The view matrix is the inverse of the camera's transformation matrix
# Here we assume the rotation matrix is orthogonal (i.e., rotation.T == rotation^-1)
view_matrix = rotation.T @ translation
return view_matrix
def generate_camera_poses_around_ellipse(num_poses, angle_step,major_radius, minor_radius,inverse=False):
"""
生成围绕原点旋转的相机位姿,形成椭圆轨迹,可以选择绕x轴、y轴或z轴旋转。
"""
poses = []
for i in range(num_poses):
angle = np.deg2rad(angle_step * i if not inverse else 360 - angle_step * i)
cam_x = major_radius* np.sin(angle)
cam_z = minor_radius* np.cos(angle)
look_at = np.array([0, 0, 0]) # 假设物体位于原点
camera_position = np.array([cam_x, 0, cam_z])
up_direction = np.array([0, 1, 0]) # 假设“上”方向为Y轴正方向
# 计算相机位姿矩阵
pose_matrix = look_at_matrix(camera_position, look_at, up_direction)
poses.append(pose_matrix)
return poses
def save_warped_image(save_path,image_path,depth_path,num_frames, degrees_per_frame,major_radius,minor_radius,inverse=False):
num_frames = 25
poses = generate_camera_poses_around_ellipse(num_frames, degrees_per_frame,major_radius, minor_radius,inverse=inverse)
near=0.0001
far=500.
focal = 260.
K = np.eye(3)
K[0,0] = focal; K[1,1] = focal; K[0,2] = 1024./2; K[1,2] = 576./2
image_o = PIL.Image.open(image_path)
image_o = image_o.resize((1024,576),PIL.Image.Resampling.NEAREST)
image = np.array(image_o)
depth = np.load(depth_path).astype(np.float32)
depth[depth < 1e-5] = 1e-5
depth = 10000./depth
depth = np.clip(depth, near, far)
new_width, new_height = 1024,576 # New dimensions
depth = cv2.resize(depth, (new_width, new_height), interpolation=cv2.INTER_NEAREST)
pose_s = poses[0]
cond_image = []
masks = []
i = 0
for pose_t in poses[1:]:
warped_frame2, mask2,flow12= forward_warp(image, None, depth, pose_s, pose_t, K, None)
mask = 1-mask2
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = np.repeat(mask[:,:,np.newaxis]*255.,repeats=3,axis=2)
kernel = np.ones((5,5), np.uint8)
mask_erosion = cv2.dilate(np.array(mask), kernel, iterations = 1)
mask_erosion = PIL.Image.fromarray(np.uint8(mask_erosion))
mask_erosion.save(os.path.join(save_path,str(i).zfill(4)+"_mask.png"))
mask_erosion_ = np.array(mask_erosion)/255.
mask_erosion_[mask_erosion_ < 0.5] = 0
mask_erosion_[mask_erosion_ >= 0.5] = 1
warped_frame2 = PIL.Image.fromarray(np.uint8(warped_frame2))
warped_frame2 = PIL.Image.fromarray(np.uint8(warped_frame2*(1-mask_erosion_)))
warped_frame2.save(os.path.join(save_path,str(i).zfill(4)+".png"))
cond_image.append(warped_frame2)
mask_erosion = np.mean(mask_erosion_,axis = -1)
mask_erosion = mask_erosion.reshape(72,8,128,8).transpose(0,2,1,3).reshape(72,128,64)
mask_erosion = np.mean(mask_erosion,axis=2)
mask_erosion[mask_erosion < 0.2] = 0
mask_erosion[mask_erosion >= 0.2] = 1
masks.append(torch.from_numpy(mask_erosion).unsqueeze(0))
i+=1
masks = torch.cat(masks)
return image_o,masks,cond_image
def svd_render(image_o,masks, cond_image,image_path,warped_img_path,output_path,lambda_ts,weight_clamp):