forked from ratishsp/data2text-plan-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
translate.py
executable file
·173 lines (143 loc) · 5.51 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
from __future__ import division, unicode_literals
import os
import argparse
import math
import codecs
import torch
from itertools import count
import onmt.io
import onmt.translate
import onmt
import onmt.ModelConstructor
import onmt.modules
import opts
parser = argparse.ArgumentParser(
description='translate.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.translate_opts(parser)
opt = parser.parse_args()
def _report_score(name, score_total, words_total):
print("%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name, score_total / words_total,
name, math.exp(-score_total / words_total)))
def _report_bleu():
import subprocess
print()
res = subprocess.check_output(
"perl tools/multi-bleu.perl %s < %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(">> " + res.strip())
def _report_rouge():
import subprocess
res = subprocess.check_output(
"python tools/test_rouge.py -r %s -c %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(res.strip())
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Load the model.
fields, model, model_opt = \
onmt.ModelConstructor.load_test_model(opt, dummy_opt.__dict__, stage1=True)
model2 = None
if opt.model2 is not None:
fields2, model2, model_opt2 = \
onmt.ModelConstructor.load_test_model(opt, dummy_opt.__dict__, stage1=False)
# File to write sentences to.
out_file = codecs.open(opt.output, 'w', 'utf-8')
# Test data
data = onmt.io.build_dataset(fields, opt.data_type,
opt.src1, opt.tgt1,
opt.src2, opt.tgt2,
src_dir=opt.src_dir,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
use_filter_pred=False)
def sort_minibatch_key(ex):
""" Sort using length of source sentences and length of target sentence """
#Needed for packed sequence
if hasattr(ex, "tgt1"):
return len(ex.src1), len(ex.tgt1)
return len(ex.src1)
# Sort batch by decreasing lengths of sentence required by pytorch.
# sort=False means "Use dataset's sortkey instead of iterator's".
data_iter = onmt.io.OrderedIterator(
dataset=data, device=opt.gpu,
batch_size=opt.batch_size, train=False, sort=False,
sort_key=sort_minibatch_key,
sort_within_batch=True, shuffle=False)
# Translator
scorer = onmt.translate.GNMTGlobalScorer(opt.alpha,
opt.beta,
opt.coverage_penalty,
opt.length_penalty)
tgt_plan_map = None
if opt.src2 is None:
tgt_plan_map = {}
for j, entry in enumerate(fields["tgt1"].vocab.itos):
if j<4:
tgt_plan_map[j] = j
else:
tgt_plan_map[j] = int(entry)
translator = onmt.translate.Translator(
model, model2, fields,
beam_size=opt.beam_size,
n_best=opt.n_best,
global_scorer=scorer,
max_length=opt.max_length,
copy_attn=model_opt.copy_attn and tgt_plan_map is None,
cuda=opt.cuda,
beam_trace=opt.dump_beam != "",
min_length=opt.min_length,
stepwise_penalty=opt.stepwise_penalty)
builder = onmt.translate.TranslationBuilder(
data, translator.fields,
opt.n_best, opt.replace_unk, has_tgt=False)
# Statistics
counter = count(1)
pred_score_total, pred_words_total = 0, 0
gold_score_total, gold_words_total = 0, 0
stage1 = opt.stage1
for batch in data_iter:
batch_data = translator.translate_batch(batch, data, stage1)
translations = builder.from_batch(batch_data, stage1)
for trans in translations:
pred_score_total += trans.pred_scores[0]
pred_words_total += len(trans.pred_sents[0])
if opt.tgt2:
gold_score_total += trans.gold_score
gold_words_total += len(trans.gold_sent)
if stage1:
n_best_preds = [" ".join([str(entry) for entry in pred])
for pred in trans.pred_sents[:opt.n_best]]
else:
n_best_preds = [" ".join(pred)
for pred in trans.pred_sents[:opt.n_best]]
out_file.write('\n'.join(n_best_preds))
out_file.write('\n')
out_file.flush()
if opt.verbose:
sent_number = next(counter)
output = trans.log(sent_number)
os.write(1, output.encode('utf-8'))
_report_score('PRED', pred_score_total, pred_words_total)
if opt.tgt2:
_report_score('GOLD', gold_score_total, gold_words_total)
if opt.report_bleu:
_report_bleu()
if opt.report_rouge:
_report_rouge()
if opt.dump_beam:
import json
json.dump(translator.beam_accum,
codecs.open(opt.dump_beam, 'w', 'utf-8'))
if __name__ == "__main__":
main()