-
Notifications
You must be signed in to change notification settings - Fork 0
/
k400_train_video_vitb-16-f8.yaml
50 lines (50 loc) · 1.36 KB
/
k400_train_video_vitb-16-f8.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
resume:
pretrain:
seed: 1024
data:
dataset: k400
modality: video
num_segments: 8
seg_length: 1 # no use
batch_size: 64
workers: 8
num_classes: 400
image_tmpl: 'img_{:05d}.jpg' # no used
train_root: 'path/to/dataset'
train_list: 'lists/k400/trainlist.txt'
val_root: 'path/to/dataset'
val_list: 'lists/k400/vallist.txt'
label_list: 'lists/k400/kinetics_400_labels.csv'
input_size: 224
random_shift: True
output_path: exps_MoTE
network:
arch: ViT-B/16 #ViT-B/32 ViT-B/16
init: True
tm: False # no use
drop_out: 0.0
emb_dropout: 0.0
sim_header: Transf # [Transf, None] 'Transf':6-layer temporal transformer 'None': mean temporal pooling
interaction: DP # [DP] 'DP': mean temporal pooling
joint_st: False # whether use joint space-time attention in the transformer (default: False)
drop: 0
fix_text: True
fix_video: False
temporal_layer: 4
num_experts: 4 # >1: MoTE; <=1: mlp
solver:
type: cosine
epochs: 30
start_epoch: 0
epoch_offset: 0
optim: adamw
lr: 5.e-5
lr_warmup_step: 5
weight_decay: 0.2
loss_type: CE
evaluate: False # only run evaluation
clip_ratio: 0.07
grad_accumulation_steps: 1
logging:
print_freq: 10
eval_freq: 1