-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
418 lines (340 loc) · 16.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import sys
import time
import argparse
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.cuda.amp import GradScaler
import torchvision
import numpy as np
from utils.utils import init_distributed_mode, epoch_saving, best_saving, AverageMeter, reduce_tensor, accuracy, gen_label, gather_labels
from utils.logger import setup_logger
import clip
from pathlib import Path
import yaml
import pprint
from dotmap import DotMap
import datetime
import shutil
from contextlib import suppress
from modules.video_clip import video_header, VideoCLIP
from utils.Augmentation import get_augmentation
from utils.solver import _optimizer, _lr_scheduler
from modules.text_prompt import text_prompt, text_prompt_ensemble
class AllGather(torch.autograd.Function):
"""An autograd function that performs allgather on a tensor."""
@staticmethod
def forward(ctx, tensor):
output = [torch.empty_like(tensor) for _ in range(dist.get_world_size())]
torch.distributed.all_gather(output, tensor)
ctx.rank = dist.get_rank()
ctx.batch_size = tensor.shape[0]
return torch.cat(output, dim=0)
# grad_output: the gradients calculated from the last layer (have same size with the output of forward())
@staticmethod
def backward(ctx, grad_output):
return (
grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
None,
)
allgather = AllGather.apply
def update_dict(dict):
new_dict = {}
for k, v in dict.items():
new_dict[k.replace('module.', '')] = v
return new_dict
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-cfg', type=str, default='clip.yaml', help='global config file')
parser.add_argument('--log_time', default='001')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int,
help='local rank for DistributedDataParallel')
parser.add_argument(
"--precision",
choices=["amp", "fp16", "fp32"],
default="amp",
help="Floating point precition."
)
args = parser.parse_args()
return args
def main(args):
global best_prec1
""" Training Program """
init_distributed_mode(args)
if args.distributed:
print('[INFO] turn on distributed train', flush=True)
else:
print('[INFO] turn off distributed train', flush=True)
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
working_dir = os.path.join(config['data']['output_path'], config['data']['dataset'], config['network']['arch'] , args.log_time)
if dist.get_rank() == 0:
Path(working_dir).mkdir(parents=True, exist_ok=True)
shutil.copy(args.config, working_dir)
shutil.copy('train.py', working_dir)
# build logger, print env and config
logger = setup_logger(output=working_dir,
distributed_rank=dist.get_rank(),
name=f'MoTE')
logger.info("------------------------------------")
logger.info("Environment Versions:")
logger.info("- Python: {}".format(sys.version))
logger.info("- PyTorch: {}".format(torch.__version__))
logger.info("- TorchVison: {}".format(torchvision.__version__))
logger.info("------------------------------------")
pp = pprint.PrettyPrinter(indent=4)
logger.info(pp.pformat(config))
logger.info("------------------------------------")
logger.info("storing name: {}".format(working_dir))
config = DotMap(config)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
cudnn.benchmark = True
# cudnn.deterministic = True
# fix the seed for reproducibility
seed = config.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# get fp16 model and weight
model_clip, clip_state_dict = clip.load(
config.network.arch,
device='cpu',jit=False,
internal_modeling=config.network.tm,
T=config.data.num_segments,
dropout=config.network.drop_out,
emb_dropout=config.network.emb_dropout,
pretrain=config.network.init,
joint_st = config.network.joint_st) # Must set jit=False for training ViT-B/32
# Data Augmentations
transform_train = get_augmentation(True, config)
transform_val = get_augmentation(False, config)
logger.info('train transforms: {}'.format(transform_train.transforms))
logger.info('val transforms: {}'.format(transform_val.transforms))
if args.precision == "amp" or args.precision == "fp32":
model_clip = model_clip.float()
if config.data.dataset == 'charades':
from datasets.charades import Video_dataset
train_data = Video_dataset(
config.data.train_root, config.data.train_list,
config.data.label_list, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl, random_shift=config.data.random_shift,
transform=transform_train, dense_sample=config.data.dense,
fps=config.data.fps)
val_data = Video_dataset(
config.data.val_root, config.data.val_list, config.data.label_list,
random_shift=False, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl,
transform=transform_val, test_mode=True, dense_sample=config.data.dense)
else:
from datasets.video import Video_dataset
train_data = Video_dataset(
config.data.train_root, config.data.train_list,
config.data.label_list, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl, random_shift=config.data.random_shift,
transform=transform_train, dense_sample=config.data.dense)
val_data = Video_dataset(
config.data.val_root, config.data.val_list, config.data.label_list,
random_shift=False, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl,
transform=transform_val, dense_sample=config.data.dense)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
train_loader = DataLoader(train_data,
batch_size=config.data.batch_size, num_workers=config.data.workers,
sampler=train_sampler, drop_last=False)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_data, shuffle=False)
val_loader = DataLoader(val_data,
batch_size=config.data.batch_size,num_workers=config.data.workers,
sampler=val_sampler, drop_last=False)
loss_type = config.solver.loss_type
if loss_type == 'CE':
print('============= Using CE Loss ==============')
criterion = torch.nn.CrossEntropyLoss()
else:
raise NotImplementedError
# ============= generate class features ==============
print('============= Start encoding class features ===========')
classes = text_prompt_ensemble(train_data)
# n_class = classes[0].size(0)
model_clip.cuda()
model_clip.eval()
with torch.no_grad():
# @zmhh_h multi text prompts
cls_feature_list = [model_clip.encode_text(classes[i].cuda(), return_token=True)[0] for i in range(len(classes))]
for cls_feature in cls_feature_list:
cls_feature /= cls_feature.norm(dim=-1, keepdim=True)
cls_feature = torch.stack(cls_feature_list, 0).mean(0)
cls_feature /= cls_feature.norm(dim=-1, keepdim=True)
print('============= End encoding class features ===========')
model = VideoCLIP(model_clip, config.data.num_segments)
del model_clip
# Temporal Aggregation Module
video_head = video_header(
config.network.sim_header,
config.network.interaction,
clip_state_dict,
config.network.temporal_layer,
config.network.num_experts,
cls_feature)
start_epoch = config.solver.start_epoch
if config.pretrain:
if os.path.isfile(config.pretrain):
logger.info("=> loading checkpoint '{}'".format(config.pretrain))
checkpoint = torch.load(config.pretrain, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
video_head.load_state_dict(checkpoint['fusion_model_state_dict'])
del checkpoint
else:
logger.info("=> no checkpoint found at '{}'".format(config.resume))
if config.resume:
if os.path.isfile(config.resume):
logger.info("=> loading checkpoint '{}'".format(config.resume))
checkpoint = torch.load(config.resume, map_location='cpu')
model.load_state_dict(update_dict(checkpoint['model_state_dict']))
video_head.load_state_dict(update_dict(checkpoint['fusion_model_state_dict']))
start_epoch = checkpoint['epoch'] + 1
logger.info("=> loaded checkpoint '{}' (epoch {})"
.format(config.evaluate, checkpoint['epoch']))
del checkpoint
else:
logger.info("=> no checkpoint found at '{}'".format(config.pretrain))
if config.network.fix_video:
for name, param in model.named_parameters():
if "visual" in name:
param.requires_grad_(False)
# ============== set optimizer ==============
optimizer = _optimizer(config, model, video_head)
lr_scheduler = _lr_scheduler(config, optimizer)
if args.distributed:
model = DistributedDataParallel(model.cuda(), device_ids=[args.gpu])
if config.network.sim_header == "None" and config.network.interaction in ['DP']:
video_head_nomodule = video_head
else:
video_head = DistributedDataParallel(video_head.cuda(), device_ids=[args.gpu], find_unused_parameters=False)
video_head_nomodule = video_head.module
scaler = GradScaler() if args.precision == "amp" else None
best_prec1 = 0.0
if config.solver.evaluate:
logger.info(("===========evaluate==========="))
prec1 = validate(start_epoch, val_loader, device, model, video_head, config, cls_feature, logger)
return
for epoch in range(start_epoch, config.solver.epochs):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train(model, video_head, train_loader, optimizer, criterion, scaler,
epoch, device, lr_scheduler, config, cls_feature, logger)
if (epoch+1) % config.logging.eval_freq == 0:
prec1 = validate(epoch, val_loader, device, model, video_head, config, cls_feature, logger)
if dist.get_rank() == 0:
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
logger.info('Testing: {}/{}'.format(prec1,best_prec1))
logger.info('Saving:')
filename = "{}/last_model.pt".format(working_dir)
epoch_saving(epoch, model.module, video_head_nomodule, optimizer, filename)
if is_best:
best_saving(working_dir, epoch, model.module, video_head_nomodule, optimizer)
def train(model, video_head, train_loader, optimizer, criterion, scaler,
epoch, device, lr_scheduler, config, text_embedding, logger):
""" train a epoch """
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
img_losses = AverageMeter()
text_losses = AverageMeter()
model.train()
video_head.train()
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
end = time.time()
for i,(images, list_id) in enumerate(train_loader):
if config.solver.type != 'monitor':
if (i + 1) == 1 or (i + 1) % 10 == 0:
lr_scheduler.step(epoch + i / len(train_loader))
# lr_scheduler.step()
data_time.update(time.time() - end)
# b t 3 h w
images = images.view((-1, config.data.num_segments, 3) + images.size()[-2:]) # b t 3 h w
b,t,c,h,w = images.size()
images= images.view(-1, c, h, w) # omit the Image.fromarray if the images already in PIL format, change this line to images=list_image if using preprocess inside the dataset class
with autocast():
if config.solver.loss_type in ['CE']:
# image_embedding: [BS*T, C]
image_embedding, logit_scale= model(images)
logits_exp, logits_wmr, mse_loss = video_head(image_embedding, text_embedding)
loss_exp = criterion(logit_scale * logits_exp, list_id.to(device))
loss_wmr = criterion(logit_scale * logits_wmr, list_id.to(device))
loss = loss_exp + 0.5*loss_wmr + 0.1*mse_loss
else:
raise NotImplementedError
loss = loss / config.solver.grad_accumulation_steps
if scaler is not None:
# back propagation
scaler.scale(loss).backward()
if (i + 1) % config.solver.grad_accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
# back propagation
loss.backward()
if (i + 1) % config.solver.grad_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
losses.update(loss.item(), logits_exp.size(0))
batch_time.update(time.time() - end)
end = time.time()
cur_iter = epoch * len(train_loader) + i
max_iter = config.solver.epochs * len(train_loader)
eta_sec = batch_time.avg * (max_iter - cur_iter + 1)
eta_sec = str(datetime.timedelta(seconds=int(eta_sec)))
if i % config.logging.print_freq == 0:
logger.info(('Epoch: [{0}][{1}/{2}], lr: {lr:.2e}, eta: {3}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
epoch, i, len(train_loader), eta_sec, batch_time=batch_time, data_time=data_time, loss=losses,
lr=optimizer.param_groups[-1]['lr'])))
def validate(epoch, val_loader, device, model, video_head, config, text_embedding, logger):
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
video_head.eval()
with torch.no_grad():
for i, (image, class_id) in enumerate(val_loader):
image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:])
b, t, c, h, w = image.size()
class_id = class_id.to(device)
text_embedding = text_embedding.to(device)
image = image.to(device).view(-1, c, h, w) # [BS*T, C, H, W]
image_embedding = model.module.encode_image(image) # [BS, T, C]
similarity = video_head(image_embedding, text_embedding) # [BS, n_cls]
prec = accuracy(similarity, class_id, topk=(1, 5))
prec1 = reduce_tensor(prec[0])
prec5 = reduce_tensor(prec[1])
top1.update(prec1.item(), class_id.size(0))
top5.update(prec5.item(), class_id.size(0))
if i % config.logging.print_freq == 0:
logger.info(
('Test: [{0}/{1}]\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), top1=top1, top5=top5)))
logger.info(('Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5)))
return top1.avg
if __name__ == '__main__':
args = get_parser()
main(args)