-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
326 lines (278 loc) · 9.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
'''Some helper functions for PyTorch, including:
- get_mean_and_std: calculate the mean and std value of dataset.
- msr_init: net parameter initialization.
- progress_bar: progress bar mimic xlua.progress.
'''
import os
import sys
import time
import math
import numpy as np
from urllib.request import urlopen, Request
import torch
from PIL import Image
import torch.nn as nn
import torch.nn.init as init
from pathlib import Path
import io
import nltk
# tree-generation consntants
METHODS = ('wordnet', 'random', 'induced')
DATASETS = ('CIFAR10', 'CIFAR100', 'TinyImagenet200', 'Imagenet1000',
'Cityscapes', 'PascalContext', 'LookIntoPerson', 'ADE20K', 'PLANE',
'FGVC', 'FGVC12','FGVC10','Imagenet10',"Fashion10",'Emo')
DATASET_TO_NUM_CLASSES = {
'CIFAR10': 10,
'CIFAR100': 100,
'TinyImagenet200': 200,
'Imagenet1000': 1000,
'Cityscapes': 19,
'PascalContext': 59,
'LookIntoPerson': 20,
'ADE20K': 150,
'PLANE': 10,
'FGVC':30,
'FGVC12':12,
'FGVC10':10,
'Imagenet10':10,
"Fashion10":10,
'Emo':7
}
DATASET_TO_CLASSES = {
'CIFAR10': [
'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',
'horse', 'ship', 'truck'
],
'PLANE':['A320', 'A380-800', 'B707', 'B747-300', '俄罗斯米格-21', '法国“阵风”',
'美国F22','美国F35','瑞典JAS-39','中国J20'],
'FGVC':['ATR','Airbus','Antonov','Beechcraft','Boeing','Bombardier Aerospace',
'British Aerospace','Canadair','Cessna','Cirrus Aircraft',
'Dassault Aviation','Dornier','Douglas Aircraft Company',
'Embraer','Eurofighter','Fairchild','Fokker','Gulfstream Aerospace',
'Ilyushin','Lockheed Corporation','Lockheed Martin','McDonnell Douglas',
'Panavia','Piper','Robin','Saab','Supermarine','Tupolev',
'Yakovlev','de Havilland'],
'FGVC12':['747-100','A380','Cessna 172','DH-82','F_A-18',
'Falcon 2000','Falcon 900','L-1011','SR-20',
'Spitfire','Tornado','Yak-42'],
'FGVC10':['747','A340','BAE-125','C-130','C-47',
'DHC-6','Eurofighter Typhoon',
'Gulfstream IV','Hawk T1','Il-76'],
'Imagenet10':['Arctic_fox',
'Gordon_setter',
'Ibizan_hound',
'Saluki',
'Tibetan_mastiff',
'goose',
'house_finch',
'robin',
'toucan',
'white_wolf'],
"Fashion10": ['Blazer','Blouse','Cardigan','Dress','Jacket','Jeans','Romper','Shorts',
'Sweater', 'Tee'],
'Emo':['amusement','awe','contentment','disgust',
'excitement','fear','sadness']
}
def maybe_install_wordnet():
try:
nltk.data.find('corpora/wordnet')
except Exception as e:
print(e)
nltk.download('wordnet')
def fwd():
"""Get file's working directory"""
return Path(__file__).parent.absolute()
def dataset_to_default_path_graph(dataset):
return hierarchy_to_path_graph(dataset, 'induced')
def hierarchy_to_path_graph(dataset, hierarchy):
return os.path.join(fwd(), f'hierarchies/{dataset}/graph-{hierarchy}.json')
def dataset_to_default_path_wnids(dataset):
return os.path.join(fwd(), f'wnids/{dataset}.txt')
def generate_kwargs(args, object, name='Dataset', keys=(), globals={}, kwargs=None):
kwargs = kwargs or {}
for key in keys:
accepts_key = getattr(object, f'accepts_{key}', False)
if not accepts_key:
continue
assert key in args or callable(accepts_key)
value = getattr(args, key, None)
if callable(accepts_key):
kwargs[key] = accepts_key(**globals)
Colors.cyan(f'{key}:\t(callable)')
elif accepts_key and value:
kwargs[key] = value
Colors.cyan(f'{key}:\t{value}')
elif value:
Colors.red(
f'Warning: {name} does not support custom '
f'{key}: {value}')
return kwargs
def load_image_from_path(path):
"""Path can be local or a URL"""
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.3'
}
if 'http' in path:
request = Request(path, headers=headers)
file = io.BytesIO(urlopen(request).read())
else:
file = path
return Image.open(file)
class Colors:
RED = '\x1b[31m'
GREEN = '\x1b[32m'
ENDC = '\033[0m'
BOLD = '\033[1m'
CYAN = '\x1b[36m'
@classmethod
def red(cls, *args):
print(cls.RED + args[0], *args[1:], cls.ENDC)
@classmethod
def green(cls, *args):
print(cls.GREEN + args[0], *args[1:], cls.ENDC)
@classmethod
def cyan(cls, *args):
print(cls.CYAN + args[0], *args[1:], cls.ENDC)
@classmethod
def bold(cls, *args):
print(cls.BOLD + args[0], *args[1:], cls.ENDC)
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
try:
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
except Exception as e:
print(e)
term_width = 50
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def set_np_printoptions():
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
def generate_fname(dataset, arch, path_graph, wnid=None, name='',
trainset=None, include_labels=(), exclude_labels=(),
include_classes=(), num_samples=0, tree_supervision_weight=0.5,
fine_tune=False, loss='CrossEntropyLoss',
**kwargs):
fname = 'ckpt'
fname += '-' + dataset
fname += '-' + arch
if name:
fname += '-' + name
if path_graph:
path = Path(path_graph)
fname += '-' + path.stem.replace('graph-', '', 1)
if include_labels:
labels = ",".join(map(str, include_labels))
fname += f'-incl{labels}'
if exclude_labels:
labels = ",".join(map(str, exclude_labels))
fname += f'-excl{labels}'
if include_classes:
labels = ",".join(map(str, include_classes))
fname += f'-incc{labels}'
if num_samples != 0 and num_samples is not None:
fname += f'-samples{num_samples}'
if loss != 'CrossEntropyLoss':
fname += f'-{loss}'
if tree_supervision_weight is not None and tree_supervision_weight != 1:
fname += f'-tsw{tree_supervision_weight}'
return fname
def coerce_tensor(x, is_label=False):
if is_label:
return x.reshape(-1,1)
else:
return x.permute(0,2,3,1).reshape(-1,x.shape[1])
def uncoerce_tensor(x, original_shape):
n,c,h,w = original_shape
return x.reshape(n,h,w,c).permute(0,3,1,2)