-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathGraphMaker.py
824 lines (707 loc) · 33.8 KB
/
GraphMaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import cv2
import numpy as np
import maxflow
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage import img_as_ubyte
from dijkstar import Graph, find_path
import os
import datetime
class GraphMaker:
foreground = 1
background = 0
seeds = 0
segmented = 1
default = 0.5
MAXIMUM = 1000000000
ImageName = "8_08-40-06"
ns = 1
###parameters###
lamda = 0.2
NORMAL = True # Consider normal vector or not?
def __init__(self):
self.depth = None
self.image = None
self.superpixel_image = None
self.overlay = None
self.seed_overlay = None
self.segment_overlay = None
self.load_image(os.path.join('Imgs', 'RGB', self.ImageName+'.jpg'),
os.path.join('Imgs', 'Depth', self.ImageName+'_Depth.png'))
self.background_seeds = []
self.foreground_seeds = []
self.foreground_superseeds = []
self.background_superseeds = []
self.nodes = []
self.edges = []
self.current_overlay = self.seeds
self.ave_LAB = None
self.ave_normal = None
self.ave_depth = None
self.confident_map = None
self.cue_selection = None
self.superpixel_segment = None
self.super_edge = None
self.normal_map = None
self.LAB_map = None
self.depth_map = None
self.cfd_LAB = None
self.cfd_normal = None
self.cfd_depth = None
self.super_label = None # label of superpixels,0~5 for
# 0:LAB FG 1:LAB BG 2:depth FG
# 3:depth BG 4:normal FG 5:normal BG
def computeSigma(self):
self.sigma1 = 0
self.sigma2 = 0
self.sigma3 = 0
for i in range(self.n_seg):
for j in self.super_edge[i]:
if j > i:
if self.sigma1 < self.eu_dis(self.ave_LAB[i], self.ave_LAB[j]):
self.sigma1 = self.eu_dis(self.ave_LAB[i], self.ave_LAB[j])
if self.sigma2 < np.abs(self.ave_depth[i] - self.ave_depth[j]):
self.sigma2 = np.abs(self.ave_depth[i] - self.ave_depth[j])
if self.NORMAL and self.sigma3 < (1 - self.cosine_sim(self.ave_normal[i], self.ave_normal[j])):
self.sigma3 = (1 - self.cosine_sim(self.ave_normal[i], self.ave_normal[j]))
self.sigma1 = self.sigma1 ** 2 * 1
self.sigma2 = self.sigma2 ** 2 * 1
self.sigma3 = self.sigma3 ** 2 * 0.5
print("sigma1 = " + str(self.sigma1))
print("sigma2 = " + str(self.sigma2))
print("sigma3 = " + str(self.sigma3))
def load_image(self, filename, depth_filename):
self.image = cv2.imread(filename)
self.depth = cv2.imread(depth_filename, cv2.IMREAD_ANYDEPTH)
self.superpixel_image = self.image.copy()
self.seed_overlay = np.zeros_like(self.image)
self.segment_overlay = np.zeros_like(self.image)
def add_seed(self, x, y, type):
if self.image is None:
print('Please load an image before adding seeds.')
if type == self.background:
if not self.background_seeds.__contains__((x, y)):
self.background_seeds.append((x, y))
cv2.rectangle(self.seed_overlay, (x - 1, y - 1), (x + 1, y + 1), (0, 0, 255), -1)
elif type == self.foreground:
if not self.foreground_seeds.__contains__((x, y)):
self.foreground_seeds.append((x, y))
cv2.rectangle(self.seed_overlay, (x - 1, y - 1), (x + 1, y + 1), (0, 255, 0), -1)
def clear_seeds(self):
self.background_seeds = []
self.foreground_seeds = []
self.background_superseeds = []
self.foreground_superseeds = []
self.seed_overlay = np.zeros_like(self.seed_overlay)
def get_image_with_overlay(self, overlayNumber):
if overlayNumber == self.seeds:
return cv2.addWeighted(self.image, 0.9, self.seed_overlay, 0.4, 0.1)
else:
return cv2.addWeighted(self.image, 0.3, self.segment_overlay, 0.7, 0.1)
def create_graph(self):
starttime = datetime.datetime.now()
print("Making graph")
self.getSuperpixel() # get superpixel
self.getCueValue_mean() # calculate average value of superpixels
self.getConfidentMap() # meanwhile we get background seeds in this func
if len(self.background_superseeds) == 0 or len(self.foreground_superseeds) == 0:
print("Please enter at least one foreground and background seed.")
return
self.computeSigma() # get sigma
# clear results
if not os.path.exists(os.path.join('Results', self.ImageName)):
os.mkdir(os.path.join('Results', self.ImageName))
for item in os.listdir(os.path.join('Results', self.ImageName)):
itemsrc = os.path.join(os.path.join('Results', self.ImageName), item)
os.remove(itemsrc)
self.swap(10) # alpha-beta swap
endtime = datetime.datetime.now()
print("total run time: " + str((endtime - starttime).seconds))
self.getImage()
def getSuperpixel(self):
starttime = datetime.datetime.now()
self.superpixel_segment = self.get_superpixel()
# init_superpixel
self.n_seg = np.amax(self.superpixel_segment) + 1 # 1 + num for superpixels
self.num_seg = np.zeros(self.n_seg, dtype=int) # count for every cluster
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
self.num_seg[self.superpixel_segment[x, y]] += 1
self.super_label = np.ones(self.n_seg, dtype=int) * 0
self.get_SuperEdge(self.superpixel_segment)
endtime = datetime.datetime.now()
print("get superpixel: " + str((endtime - starttime).seconds))
def getCueValue_mean(self):
starttime = datetime.datetime.now()
self.normal_map = self.normalMap()
self.LAB_map = self.LABMap()
self.depth_map = self.depth
# normalMap for superpixel
if self.NORMAL:
self.ave_normal = np.zeros((self.n_seg, 3), dtype=float)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
self.ave_normal[self.superpixel_segment[x, y]] += self.normal_map[x, y]
for i in range(0, self.n_seg):
self.ave_normal[i] = self.normalizeVector(self.ave_normal[i])
# depthMap for superpixel
self.ave_depth = np.zeros(self.n_seg, dtype=float)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
self.ave_depth[self.superpixel_segment[x, y]] += self.depth_map[x, y]
for i in range(0, self.n_seg):
self.ave_depth[i] /= self.num_seg[i]
# LABMap for superpixel
self.ave_LAB = np.zeros((self.n_seg, 3), dtype=float)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
self.ave_LAB[self.superpixel_segment[x, y]] += self.image[x, y]
for i in range(0, self.n_seg):
self.ave_LAB[i] /= self.num_seg[i]
endtime = datetime.datetime.now()
print("get mean-super-value for each cue: " + str((endtime - starttime).seconds))
def getConfidentMap(self):
starttime = datetime.datetime.now()
for coordinate in self.foreground_seeds:
if self.superpixel_segment[coordinate[1] - 1, coordinate[0] - 1] not in self.foreground_superseeds:
self.foreground_superseeds.append(self.superpixel_segment[coordinate[1] - 1, coordinate[0] - 1])
for coordinate in self.background_seeds:
if self.superpixel_segment[coordinate[1] - 1, coordinate[0] - 1] not in self.background_superseeds:
self.background_superseeds.append(self.superpixel_segment[coordinate[1] - 1, coordinate[0] - 1])
cost_func = lambda u, v, e, prev_e: e['cost']
#######For LAB foreground#######
G_LAB = Graph()
# add edges
weight = [[] for i in range(0, self.n_seg)]
aveMinWeight = 0
for u in range(0, self.n_seg):
minWeight = self.MAXIMUM
for v in self.super_edge[u]:
w = self.eu_dis(self.ave_LAB[u], self.ave_LAB[v])
weight[u].append((v, w))
if minWeight > w:
minWeight = w
aveMinWeight += minWeight
aveMinWeight /= self.n_seg
for u in range(0, self.n_seg):
for v, w in weight[u]:
if w < aveMinWeight:
G_LAB.add_edge(u, v, {'cost': w / 3})
else:
G_LAB.add_edge(u, v, {'cost': w})
for v in self.foreground_superseeds:
G_LAB.add_edge(v, 's', {'cost': 0})
Lab_disFore = np.zeros(self.n_seg, dtype=float)
Lab_disFore.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_LAB, v, 's', cost_func=cost_func)
Lab_disFore[v] = info.total_cost
endtime = datetime.datetime.now()
print("compute LAB disfore: " + str((endtime - starttime).seconds))
#######For Normal foreground#######
if self.NORMAL:
starttime = datetime.datetime.now()
G_normal = Graph()
# add edges
weight = [[] for i in range(0, self.n_seg)]
aveMinWeight = 0
for u in range(0, self.n_seg):
minWeight = self.MAXIMUM
for v in self.super_edge[u]:
w = 1 - self.cosine_sim(self.ave_normal[u], self.ave_normal[v])
weight[u].append((v, w))
if minWeight > w:
minWeight = w
aveMinWeight += minWeight
aveMinWeight /= self.n_seg
for u in range(0, self.n_seg):
for v, w in weight[u]:
if w < aveMinWeight:
G_normal.add_edge(u, v, {'cost': w / 3})
else:
G_normal.add_edge(u, v, {'cost': w})
for v in self.foreground_superseeds:
G_normal.add_edge(v, 's', {'cost': 0})
Normal_disFore = np.zeros(self.n_seg, dtype=float)
Normal_disFore.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_normal, v, 's', cost_func=cost_func)
Normal_disFore[v] = info.total_cost
endtime = datetime.datetime.now()
print("compute Normal disfore: " + str((endtime - starttime).seconds))
#######For depth foreground#######
starttime = datetime.datetime.now()
G_depth = Graph()
# add edges
weight = [[] for i in range(0, self.n_seg)]
aveMinWeight = 0
for u in range(0, self.n_seg):
minWeight = self.MAXIMUM
for v in self.super_edge[u]:
w = np.abs(self.ave_depth[u] - self.ave_depth[v])
weight[u].append((v, w))
if minWeight > w:
minWeight = w
aveMinWeight += minWeight
aveMinWeight /= self.n_seg
for u in range(0, self.n_seg):
for v, w in weight[u]:
if w < aveMinWeight:
G_depth.add_edge(u, v, {'cost': w / 3})
else:
G_depth.add_edge(u, v, {'cost': w})
for v in self.foreground_superseeds:
G_depth.add_edge(v, 's', {'cost': 0})
Depth_disFore = np.zeros(self.n_seg, dtype=float)
Depth_disFore.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_depth, v, 's', cost_func=cost_func)
Depth_disFore[v] = info.total_cost
Maxdis = 0
for i in range(0, self.n_seg):
if Maxdis < Depth_disFore[i]:
Maxdis = Depth_disFore[i]
endtime = datetime.datetime.now()
print("compute Depth disfore: " + str((endtime - starttime).seconds))
#######get background_seed#######
starttime = datetime.datetime.now()
boundary_superpixel = []
for x in range(0, len(self.image)):
if self.superpixel_segment[x, 0] not in boundary_superpixel:
boundary_superpixel.append(self.superpixel_segment[x, 0])
if self.superpixel_segment[x, len(self.image[0]) - 1] not in boundary_superpixel:
boundary_superpixel.append(self.superpixel_segment[x, len(self.image[0]) - 1])
for y in range(0, len(self.image[0])):
if self.superpixel_segment[0, y] not in boundary_superpixel:
boundary_superpixel.append(self.superpixel_segment[0, y])
if self.superpixel_segment[len(self.image) - 1, y] not in boundary_superpixel:
boundary_superpixel.append(self.superpixel_segment[len(self.image) - 1, y])
for boundary in boundary_superpixel:
if Depth_disFore[boundary] / Maxdis > 0.1 and boundary not in self.background_superseeds:
self.background_superseeds.append(boundary)
for v in self.background_superseeds:
if self.NORMAL:
G_normal.add_edge(v, 't', {'cost': 0})
G_LAB.add_edge(v, 't', {'cost': 0})
G_depth.add_edge(v, 't', {'cost': 0})
endtime = datetime.datetime.now()
print("get background superseeds: " + str((endtime - starttime).seconds))
#######For LAB background#######
starttime = datetime.datetime.now()
Lab_disBack = np.zeros(self.n_seg, dtype=float)
Lab_disBack.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_LAB, v, 't', cost_func=cost_func)
Lab_disBack[v] = info.total_cost
endtime = datetime.datetime.now()
print("compute LAB disback: " + str((endtime - starttime).seconds))
#######For Normal background#######
if self.NORMAL:
starttime = datetime.datetime.now()
Normal_disBack = np.zeros(self.n_seg, dtype=float)
Normal_disBack.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_normal, v, 't', cost_func=cost_func)
Normal_disBack[v] = info.total_cost
endtime = datetime.datetime.now()
print("compute Normal disback: " + str((endtime - starttime).seconds))
#######For Depth background#######
starttime = datetime.datetime.now()
Depth_disBack = np.zeros(self.n_seg, dtype=float)
Depth_disBack.fill(self.MAXIMUM)
for v in range(0, self.n_seg):
info = find_path(G_depth, v, 't', cost_func=cost_func)
Depth_disBack[v] = info.total_cost
endtime = datetime.datetime.now()
print("compute Depth disback: " + str((endtime - starttime).seconds))
#######confident map for each cue#######
starttime = datetime.datetime.now()
self.cfd_LAB = np.zeros(self.n_seg, dtype=float)
if self.NORMAL:
self.cfd_normal = np.zeros(self.n_seg, dtype=float)
self.cfd_depth = np.zeros(self.n_seg, dtype=float)
for i in range(0, self.n_seg):
self.cfd_LAB[i] = Lab_disBack[i] / (Lab_disBack[i] + Lab_disFore[i])
if self.NORMAL:
self.cfd_normal[i] = Normal_disBack[i] / (Normal_disBack[i] + Normal_disFore[i])
self.cfd_depth[i] = Depth_disBack[i] / (Depth_disBack[i] + Depth_disFore[i])
endtime = datetime.datetime.now()
print("compute confident map: " + str((endtime - starttime).seconds))
def swap(self, MaxIteration=4):
starttime = datetime.datetime.now()
oldEnergy = self.computeEnerge()
print("initial energe:" + str(oldEnergy))
for i in range(MaxIteration):
self.oneSwapIteration(i)
newEnergy = self.computeEnerge()
print("iter" + str(i + 1) + " Energe:" + str(newEnergy))
if newEnergy >= oldEnergy:
break
oldEnergy = newEnergy
endtime = datetime.datetime.now()
print("alpha-beta-swap: " + str((endtime - starttime).seconds))
def oneSwapIteration(self, iteration):
# self.get_seg_now(str(iteration) + "-00")
old = self.computeEnerge()
for i in range(0, 6):
if not self.NORMAL and i >= 4:
continue
for j in range(i + 1, 6):
if not self.NORMAL and j >= 4:
continue
self.alpha_beta_swap(i, j)
new = self.computeEnerge()
# if old > new:
# self.get_seg_now(str(iteration) + "-" + str(i) + str(j))
old = new
def alpha_beta_swap(self, alpha, beta):
###add nodes and edges for graphCuts###
self.nodes = []
self.edges = []
reflect = [] ##discontinuity to continuity
if alpha == 0:
cap_source = 1 - self.cfd_LAB
elif alpha == 1:
cap_source = self.cfd_LAB
elif alpha == 2:
cap_source = 1 - self.cfd_depth
elif alpha == 3:
cap_source = self.cfd_depth
elif alpha == 4:
cap_source = 1 - self.cfd_normal
elif alpha == 5:
cap_source = self.cfd_normal
if beta == 0:
cap_sink = 1 - self.cfd_LAB
elif beta == 1:
cap_sink = self.cfd_LAB
elif beta == 2:
cap_sink = 1 - self.cfd_depth
elif beta == 3:
cap_sink = self.cfd_depth
elif beta == 4:
cap_sink = 1 - self.cfd_normal
elif beta == 5:
cap_sink = self.cfd_normal
for i in range(self.n_seg):
if self.super_label[i] == alpha or self.super_label[i] == beta:
reflect.append(i)
source_add = 0
sink_add = 0
for neighbor in self.super_edge[i]:
if self.super_label[neighbor] != alpha and self.super_label[neighbor] != beta:
source_add += self.smoothWeight(i, neighbor, alpha)
sink_add += self.smoothWeight(i, neighbor, beta)
self.nodes.append((reflect.index(i), cap_source[i] + source_add, cap_sink[i] + sink_add))
for n in self.nodes:
u = reflect[n[0]]
for v in self.super_edge[u]:
if (self.super_label[v] == alpha or self.super_label[v] == beta) and v > u:
# print(str(u) + "," + str(v))
weight = self.smoothWeight(u, v)
self.edges.append((reflect.index(u), reflect.index(v), weight))
####GraphCuts####
g = maxflow.Graph[float](len(self.nodes), len(self.edges))
nodelist = g.add_nodes(len(self.nodes))
for node in self.nodes:
g.add_tedge(nodelist[node[0]], node[1], node[2])
for edge in self.edges:
g.add_edge(edge[0], edge[1], edge[2], edge[2])
flow = g.maxflow()
for vect in self.nodes:
v = vect[0]
if g.get_segment(v) == 0: # beta
self.super_label[reflect[v]] = beta
else: # alpha
self.super_label[reflect[v]] = alpha
def computeEnerge(self):
return (self.giveDataEnerge() + self.giveSmoothEnerge())
def giveDataEnerge(self):
energe = 0
for i in range(self.n_seg):
if self.super_label[i] == 0:
energe += (1 - self.cfd_LAB[i])
elif self.super_label[i] == 1:
energe += self.cfd_LAB[i]
elif self.super_label[i] == 2:
energe += (1 - self.cfd_depth[i])
elif self.super_label[i] == 3:
energe += self.cfd_depth[i]
elif self.super_label[i] == 4:
energe += (1 - self.cfd_normal[i])
elif self.super_label[i] == 5:
energe += self.cfd_normal[i]
if energe != energe:
print(str(i) + ":" + str(self.super_label[i]))
break
return energe
def giveSmoothEnerge(self): # compute SmoothEnerge
energe = 0
for u in range(self.n_seg):
for v in self.super_edge[u]:
if v < u:
continue
if self.super_label[u] == self.super_label[v]:
continue
energe += self.smoothWeight(u, v)
return energe
def smoothWeight(self, u, v, alpha=-1):
if u not in self.super_edge[v] or v not in self.super_edge[u]:
return 0
if alpha == -1:
alpha = self.super_label[u]
if alpha == 0 or alpha == 1:
weight1 = self.lamda * np.e ** (-(self.eu_dis(self.ave_LAB[u], self.ave_LAB[v]) ** 2) / self.sigma1)
elif alpha == 2 or alpha == 3:
weight1 = self.lamda * np.e ** (-(np.abs(self.ave_depth[u] - self.ave_depth[v]) ** 2) / self.sigma2)
elif alpha == 4 or alpha == 5:
weight1 = self.lamda * np.e ** (
-((1 - self.cosine_sim(self.ave_normal[v], self.ave_normal[u])) ** 2) / self.sigma3)
if self.super_label[v] == 0 or self.super_label[v] == 1:
weight2 = self.lamda * np.e ** (-(self.eu_dis(self.ave_LAB[u], self.ave_LAB[v]) ** 2) / self.sigma1)
elif self.super_label[v] == 2 or self.super_label[v] == 3:
weight2 = self.lamda * np.e ** (-(np.abs(self.ave_depth[u] - self.ave_depth[v]) ** 2) / self.sigma2)
elif self.super_label[v] == 4 or self.super_label[v] == 5:
weight2 = self.lamda * np.e ** (
-((1 - self.cosine_sim(self.ave_normal[v], self.ave_normal[u])) ** 2) / self.sigma3)
return min(weight1, weight2)
@staticmethod
def eu_dis(v1, v2):
return np.sqrt((v1[0] - v2[0]) ** 2 + (v1[1] - v2[1]) ** 2 + (v1[2] - v2[2]) ** 2)
@staticmethod
def cosine_sim(vector1, vector2):
return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * (np.linalg.norm(vector2)))
# SLIC SuperPixel
def get_superpixel(self):
segments = slic(self.image, n_segments=800)
self.superpixel_image = img_as_ubyte(mark_boundaries(self.image, segments))
return segments
def get_SuperEdge(self, segments):
self.super_edge = [[] for _ in range(0, self.n_seg)]
for x in range(0, len(segments)):
for y in range(0, len(segments[0])):
for i in range(-1, 2):
for j in range(-1, 2):
if i == 0 and j == 0:
continue
if (x + i < 0 or x + i >= len(segments) or y + j < 0 or y + j >= len(
segments[0])):
continue
if (segments[x, y] != segments[x + i, y + j]):
if segments[x, y] not in self.super_edge[
segments[x + i, y + j]]:
self.super_edge[segments[x + i, y + j]].append(
segments[x, y])
self.super_edge[segments[x, y]].append(
segments[x + i, y + j])
# construct normalMap
def normalMap(self):
normal_map = np.zeros_like(self.image, dtype=float)
width = self.depth.shape[1]
height = self.depth.shape[0]
for x in range(1, height - 1):
for y in range(1, width - 1):
dzdx = ((int)(self.depth[x + 1, y]) - (int)(self.depth[x - 1, y])) / 2
dzdy = ((int)(self.depth[x, y + 1]) - (int)(self.depth[x, y - 1])) / 2
d = (-dzdx, -dzdy, 1.0)
n1 = self.normalizeVector(d)
dzdxy = ((int)(self.depth[x + 1, y + 1]) - (int)(self.depth[x - 1, y - 1])) / 2.828
dzdyx = ((int)(self.depth[x - 1, y + 1]) - (int)(self.depth[x + 1, y - 1])) / 2.828
d = ((dzdyx - dzdxy), (-dzdxy - dzdyx), 2)
n2 = self.normalizeVector(d)
d = n1 + n2
n = self.normalizeVector(d)
normal_map[x, y] = n
return normal_map
# construct LABMap
def LABMap(self):
LAB_map_raw = cv2.cvtColor(self.image, cv2.COLOR_RGB2Lab)
LAB_map = np.zeros_like(LAB_map_raw, dtype=np.int8)
for i in range(len(LAB_map)):
for j in range(len(LAB_map[0])):
LAB_map[i, j][0] = LAB_map_raw[i, j][0] / 255 * 100
LAB_map[i, j][1] = LAB_map_raw[i, j][1] - 128
LAB_map[i, j][2] = LAB_map_raw[i, j][2] - 128
return LAB_map
@staticmethod
def normalizeVector(d):
return d / (np.sqrt(d[0] ** 2 + d[1] ** 2 + d[2] ** 2))
def compute_alpha_beta_energy(self, alpha, beta, reflect):
energy = 0
if alpha == 0:
cap_source = 1 - self.cfd_LAB
elif alpha == 1:
cap_source = self.cfd_LAB
elif alpha == 2:
cap_source = 1 - self.cfd_depth
elif alpha == 3:
cap_source = self.cfd_depth
elif alpha == 4:
cap_source = 1 - self.cfd_normal
elif alpha == 5:
cap_source = self.cfd_normal
if beta == 0:
cap_sink = 1 - self.cfd_LAB
elif beta == 1:
cap_sink = self.cfd_LAB
elif beta == 2:
cap_sink = 1 - self.cfd_depth
elif beta == 3:
cap_sink = self.cfd_depth
elif beta == 4:
cap_sink = 1 - self.cfd_normal
elif beta == 5:
cap_sink = self.cfd_normal
energyout = 0
energyadd = 0
energysmoothout = 0
# for node in self.nodes:
for i in range(self.n_seg):
if self.super_label[i] == alpha:
energy += cap_source[i]
elif self.super_label[i] == beta:
energy += cap_sink[i]
else:
if self.super_label[i] == 0:
energyout += (1 - self.cfd_LAB[i])
elif self.super_label[i] == 1:
energyout += self.cfd_LAB[i]
elif self.super_label[i] == 2:
energyout += (1 - self.cfd_depth[i])
elif self.super_label[i] == 3:
energyout += self.cfd_depth[i]
elif self.super_label[i] == 4:
energyout += (1 - self.cfd_normal[i])
elif self.super_label[i] == 5:
energyout += self.cfd_normal[i]
if self.super_label[i] == alpha or self.super_label[i] == beta:
for neighbor in self.super_edge[i]:
if self.super_label[neighbor] != alpha and self.super_label[neighbor] != beta:
energyadd += self.smoothWeight(i, neighbor)
else:
for neighbor in self.super_edge[i]:
if self.super_label[neighbor] != alpha and self.super_label[neighbor] != beta and neighbor > i:
energysmoothout += self.smoothWeight(i, neighbor)
energysmooth = 0
for edge in self.edges:
if self.super_label[reflect[edge[0]]] != self.super_label[reflect[edge[1]]]:
energysmooth += edge[2]
energy += (energysmooth)
return energy
def getImage(self):
#########check edge on superpixels#########
temp_img = self.superpixel_image.copy()
ave_cor = [[0, 0] for i in range(0, self.n_seg)]
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
ave_cor[self.superpixel_segment[x, y]][0] += x
ave_cor[self.superpixel_segment[x, y]][1] += y
for i in range(0, self.n_seg):
ave_cor[i] /= self.num_seg[i]
for i in range(0, self.n_seg):
for j in self.super_edge[i]:
if j < i:
continue
cv2.line(temp_img, (int(ave_cor[i][1]), int(ave_cor[i][0])), (int(ave_cor[j][1]), int(ave_cor[j][0])),
(0, 0, 255), 1)
temp_img = temp_img.astype('uint8')
cv2.imwrite(os.path.join('Results', self.ImageName, "edgeImg.jpg"), temp_img)
###get overlay###
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
if self.super_label[vect] % 2 == 0:
self.segment_overlay[x, y] = (255, 255, 255)
else:
self.segment_overlay[x, y] = (0, 0, 0)
###get image with annotation###
temp_img = self.image.copy()
for x in range(0, len(temp_img)):
for y in range(0, len(temp_img[0])):
if self.superpixel_segment[x, y] in self.background_superseeds:
temp_img[x, y] = (0, 0, 255)
if self.superpixel_segment[x, y] in self.foreground_superseeds:
temp_img[x, y] = (0, 255, 0)
cv2.imwrite(os.path.join('Results', self.ImageName, "backseeds.jpg"), temp_img)
###get superpixels image###
temp_img = self.superpixel_image.copy()
cv2.imwrite(os.path.join('Results', self.ImageName, "superpixel.jpg"), temp_img)
###get LAB image###
temp_img = self.LAB_map.copy()
cv2.imwrite(os.path.join('Results', self.ImageName, "LABmap.jpg"), temp_img)
###get depth image###
temp_img = self.depth_map / np.amax(self.depth_map) * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "depthmap.jpg"), temp_img)
###get normal image###
if self.NORMAL:
temp_img = self.normal_map * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "normalmap.jpg"), temp_img)
###get configent map of lab###
temp_img = np.zeros_like(self.image)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
temp_img[x, y] = self.cfd_LAB[vect] * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "confident_LAB.jpg"), temp_img)
###get confident map of depth###
temp_img = np.zeros_like(self.image)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
temp_img[x, y] = self.cfd_depth[vect] * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "confident_depth.jpg"), temp_img)
###get confident map of normal###
if self.NORMAL:
temp_img = np.zeros_like(self.image)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
temp_img[x, y] = self.cfd_normal[vect] * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "confident_normal.jpg"), temp_img)
###get Results###
temp_img = cv2.addWeighted(self.image, 0.2, self.segment_overlay, 0.8, 0.1)
cv2.imwrite(os.path.join('Results', self.ImageName, "segment.jpg"), temp_img)
###Results with cues###
self.segment_overlay = np.zeros_like(self.image)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
if self.super_label[vect] == 0:
self.segment_overlay[x, y] = (0, 0, 255)
elif self.super_label[vect] == 1:
self.segment_overlay[x, y] = (0, 255, 0)
elif self.super_label[vect] == 2:
self.segment_overlay[x, y] = (0, 255, 255)
elif self.super_label[vect] == 3:
self.segment_overlay[x, y] = (255, 0, 0)
elif self.super_label[vect] == 4:
self.segment_overlay[x, y] = (0, 153, 255)
elif self.super_label[vect] == 5:
self.segment_overlay[x, y] = (255, 0, 153)
temp_img = cv2.addWeighted(self.image, 0.2, self.segment_overlay, 0.8, 0.1)
cv2.imwrite(os.path.join('Results', self.ImageName, "segment_cues.jpg"), temp_img)
temp_img = np.zeros_like(self.image)
w = np.amax(self.depth_map)
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
temp_img[x, y] = self.ave_depth[self.superpixel_segment[x, y]] / w * 255
cv2.imwrite(os.path.join('Results', self.ImageName, "ave_depth.jpg"), temp_img)
def get_seg_now(self, path): # get current seg
for x in range(0, len(self.superpixel_segment)):
for y in range(0, len(self.superpixel_segment[0])):
vect = self.superpixel_segment[x, y]
if self.super_label[vect] == 0:
self.segment_overlay[x, y] = (0, 0, 255)
elif self.super_label[vect] == 1:
self.segment_overlay[x, y] = (0, 255, 0)
elif self.super_label[vect] == 2:
self.segment_overlay[x, y] = (0, 255, 255)
elif self.super_label[vect] == 3:
self.segment_overlay[x, y] = (255, 0, 0)
elif self.super_label[vect] == 4:
self.segment_overlay[x, y] = (0, 153, 255)
elif self.super_label[vect] == 5:
self.segment_overlay[x, y] = (255, 0, 153)
temp = img_as_ubyte(mark_boundaries(self.get_image_with_overlay(self.segmented), self.superpixel_segment))
cv2.imwrite(os.path.join('Results', self.ImageName, path + ".jpg"), temp)
self.segment_overlay = np.zeros_like(self.segment_overlay)