-
Notifications
You must be signed in to change notification settings - Fork 40
/
correct_key.rs
233 lines (188 loc) · 7.81 KB
/
correct_key.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
zk-paillier
Copyright 2018 by Kzen Networks
zk-paillier is free software: you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
@license GPL-3.0+ <https://github.com/KZen-networks/zk-paillier/blob/master/LICENSE>
*/
use std::iter;
use serde::{Deserialize, Serialize};
use thiserror::Error;
use curv::arithmetic::traits::*;
use curv::BigInt;
use paillier::{extract_nroot, DecryptionKey, EncryptionKey};
use rayon::prelude::*;
use super::errors::IncorrectProof;
use super::utils::compute_digest;
const STATISTICAL_ERROR_FACTOR: usize = 40;
#[derive(Debug, Serialize, Deserialize)]
pub struct Challenge {
#[serde(with = "crate::serialize::vecbigint")]
pub sn: Vec<BigInt>,
#[serde(with = "crate::serialize::bigint")]
pub e: BigInt,
#[serde(with = "crate::serialize::vecbigint")]
pub z: Vec<BigInt>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct VerificationAid {
#[serde(with = "crate::serialize::bigint")]
s_digest: BigInt,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct CorrectKeyProof {
#[serde(with = "crate::serialize::bigint")]
s_digest: BigInt,
}
/// Zero-knowledge proof of co-primality between the encryption modulus and its order.
///
/// The sub-protocol for proving knowledge of challenge plaintexts is made non-interactive
/// using the [Fiat-Shamir heuristic](https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic).
///
/// References:
/// - section 3.1 in [Lindell'17](https://eprint.iacr.org/2017/552)
/// - section 3.3 in [HMRTN'12](https://eprint.iacr.org/2011/494)
/// - section 4.2 in [DJ'01](http://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf)
pub struct CorrectKey;
impl CorrectKey {
pub fn challenge(ek: &EncryptionKey) -> (Challenge, VerificationAid) {
// Compute challenges in the form of n-powers
let s: Vec<_> = (0..STATISTICAL_ERROR_FACTOR)
.into_par_iter()
.map(|_| BigInt::sample_below(&ek.n))
.collect();
let sn: Vec<_> = s
.par_iter()
.map(|si| BigInt::mod_pow(si, &ek.n, &ek.n))
.collect();
// Compute non-interactive proof of knowledge of the n-roots in the above
// TODO[Morten] introduce new proof type for this that can be used independently?
let r: Vec<_> = (0..STATISTICAL_ERROR_FACTOR)
.into_par_iter()
.map(|_| BigInt::sample_below(&ek.n))
.collect();
let rn: Vec<_> = r
.par_iter()
.map(|ri| BigInt::mod_pow(ri, &ek.n, &ek.n))
.collect();
let e = compute_digest(iter::once(&ek.n).chain(&sn).chain(&rn));
let z: Vec<_> = r
.par_iter()
.zip(s.par_iter())
.map(|(ri, si)| (ri * BigInt::mod_pow(si, &e, &ek.n)) % &ek.n)
.collect();
// Compute expected result for equality test in verification
let s_digest: BigInt = compute_digest(s.iter());
(Challenge { sn, e, z }, VerificationAid { s_digest })
}
pub fn prove(
dk: &DecryptionKey,
challenge: &Challenge,
) -> Result<CorrectKeyProof, CorrectKeyProveError> {
let dk_n = &dk.q * &dk.p;
// check sn co-prime with n
let not_coprime = challenge
.sn
.par_iter()
.any(|sni| BigInt::egcd(&dk_n, sni).0 != BigInt::one());
if not_coprime {
return Err(CorrectKeyProveError::SniNotCoprimeWithN);
}
// check z co-prime with n
let not_coprime = challenge
.z
.par_iter()
.any(|zi| BigInt::egcd(&dk_n, zi).0 != BigInt::one());
if not_coprime {
return Err(CorrectKeyProveError::ZiNotCoprimeWithN);
}
// reconstruct rn
let phi = (dk.q.clone() - 1) * (dk.p.clone() - 1);
// TODO: make dk.phi public
let phimine = &phi - (&challenge.e % &phi);
let rn: Vec<_> = challenge
.z
.par_iter()
.zip(challenge.sn.par_iter())
.map(|(zi, sni)| {
let zn = BigInt::mod_pow(zi, &dk_n, &dk_n);
let snphi = BigInt::mod_pow(sni, &phimine, &dk_n);
(zn * snphi) % &dk_n
})
.collect();
// check rn co-prime with n
let not_coprime = rn
.par_iter()
.any(|rni| BigInt::egcd(&dk_n, rni).0 != BigInt::one());
if not_coprime {
return Err(CorrectKeyProveError::RniNotCoprimeWithN);
}
// check that e was computed correctly
let e = compute_digest(iter::once(&dk_n).chain(&challenge.sn).chain(&rn));
let wasnt_computed_correctly = challenge.e != e;
if wasnt_computed_correctly {
return Err(CorrectKeyProveError::EWasntComputedCorrectly);
}
// compute proof in the form of a hash of the recovered roots
let s_digest = compute_digest(challenge.sn.iter().map(|sni| extract_nroot(dk, sni)));
Ok(CorrectKeyProof { s_digest })
}
pub fn verify(proof: &CorrectKeyProof, va: &VerificationAid) -> Result<(), IncorrectProof> {
// compare actual with expected
if proof.s_digest == va.s_digest {
Ok(())
} else {
Err(IncorrectProof)
}
}
}
#[derive(Debug, Clone, Error)]
pub enum CorrectKeyProveError {
#[error("`challenge.sn[i]` isn't co-prime with `n`")]
SniNotCoprimeWithN,
#[error("`challenge.z[i]` isn't co-prime with `n`")]
ZiNotCoprimeWithN,
#[error("`rn[i]` isn't co-prime with `n`")]
RniNotCoprimeWithN,
#[error("`challenge.e` wasn't computed correctly")]
EWasntComputedCorrectly,
}
#[cfg(test)]
mod tests {
use super::*;
use paillier::Keypair;
fn test_keypair() -> Keypair {
let p = BigInt::from_str_radix("148677972634832330983979593310074301486537017973460461278300587514468301043894574906886127642530475786889672304776052879927627556769456140664043088700743909632312483413393134504352834240399191134336344285483935856491230340093391784574980688823380828143810804684752914935441384845195613674104960646037368551517", 10).unwrap();
let q = BigInt::from_str_radix("158741574437007245654463598139927898730476924736461654463975966787719309357536545869203069369466212089132653564188443272208127277664424448947476335413293018778018615899291704693105620242763173357203898195318179150836424196645745308205164116144020613415407736216097185962171301808761138424668335445923774195463", 10).unwrap();
Keypair { p, q }
}
#[test]
fn test_correct_zk_proof() {
let (ek, dk) = test_keypair().keys();
let (challenge, verification_aid) = CorrectKey::challenge(&ek);
let proof_results = CorrectKey::prove(&dk, &challenge);
assert!(proof_results.is_ok());
let result = CorrectKey::verify(&proof_results.unwrap(), &verification_aid);
assert!(result.is_ok());
}
#[test]
fn test_incorrect_zk_proof() {
let (ek, dk) = test_keypair().keys();
let (mut challenge, _verification_aid) = CorrectKey::challenge(&ek);
challenge.e += 1;
let proof_results = CorrectKey::prove(&dk, &challenge);
assert!(proof_results.is_err()); // ERROR expected because of manipulated challenge
}
#[test]
fn test_incorrect_zk_proof_2() {
let (ek, dk) = test_keypair().keys();
let (challenge, mut verification_aid) = CorrectKey::challenge(&ek);
let proof_results = CorrectKey::prove(&dk, &challenge);
assert!(proof_results.is_ok());
verification_aid.s_digest += 1;
let result = CorrectKey::verify(&proof_results.unwrap(), &verification_aid);
assert!(result.is_err()); // ERROR expected because of manipulated aid
}
}